

The Ecological, Economic, and Climatic Importance of Seagrasses

Seagrasses are remarkable marine flowering plants that have adapted to life underwater, creating vast meadows that serve as the foundation for some of the most productive ecosystems on our planet. These underwater gardens provide critical habitat for countless marine species, sequester carbon at impressive rates, and deliver numerous ecosystem services that benefit human communities worldwide.

This presentation explores the unique biology of seagrasses, their global distribution, and the vital ecological, economic, and climatic services they provide - from supporting fisheries to protecting coastlines and mitigating climate change.

 Şevki Danacıoğlu

Definition of Seagrasses

Marine Angiosperms

Seagrasses are marine angiosperms adapted to exist fully submerged in brackish or salt water. Unlike algae, they are true flowering plants with specialized adaptations for underwater life.

Ecosystem Engineers

They promote sediment deposition, stabilize substrates, decrease water velocity, and function as part of the estuarine filtration system, removing contaminants from the water column.

Ecosystem Services

Seagrasses provide nutrient cycling, support commercially important fish species as nursery habitat, and serve as an important food source for mega-herbivores like green turtles, dugongs, and manatees.

Seagrasses vs. Algae: Key Differences

Vascular Plants

Like terrestrial plants, seagrasses have veins (lignified conducting tissue) that transport food, nutrients, and water throughout the plant. This vascular system is completely absent in algae.

Root Systems

Seagrasses possess true roots that bury into the substrate, anchoring the plant and absorbing nutrients. In contrast, algae attach to surfaces with holdfasts but cannot penetrate the substrate.

Reproduction

As flowering plants, seagrasses produce flowers, fruits, and seeds as part of their reproductive cycle. Algae reproduce through entirely different mechanisms and never produce flowers or seeds.

Diversity in Seagrass Morphology

Paddle Shape

Some seagrass species feature oval or paddle-shaped leaves, creating distinctive meadow formations on the seafloor. These broader leaf structures capture sunlight efficiently in certain water conditions.

Fern Shape

Fern-shaped seagrass species display intricate, delicate fronds that create complex habitat structures. These elaborate leaf patterns maximize surface area for photosynthesis.

Ribbon Shape

The most recognizable seagrasses have long, ribbon-like leaves that can reach impressive lengths - some extending up to 7 meters. These flowing meadows create the classic "underwater prairie" appearance.

Seagrasses range dramatically in size, from tiny species with leaves the size of a fingernail to massive plants with leaves stretching several meters in length. This diversity allows them to thrive in various marine environments.

Global Distribution of Seagrasses

1

Pan-Global Presence

Seagrass meadows have a worldwide distribution, found in shallow coastal areas of all continents except Antarctica. Their ability to adapt to different conditions has allowed them to colonize diverse marine environments globally.

2

Depth Range

Seagrasses occupy soft-bottom sediments from the intertidal zone (areas exposed during low tide) to depths of up to 40 meters, depending on water clarity and light penetration.

3

Climate Adaptability

These remarkable plants thrive across climate zones, from tropical waters near the equator to temperate regions with seasonal temperature variations, demonstrating their evolutionary success and adaptability.

Mapping Seagrass Distribution

17M

Minimum Hectares

The lowest global estimate of seagrass coverage, highlighting the significant area these ecosystems occupy worldwide.

60M

Maximum Hectares

The highest estimate of global seagrass coverage, showing the potential scale of these vital marine habitats.

25%

Mapped Coverage

Less than a quarter of the world's seagrasses have been properly mapped, indicating significant knowledge gaps.

Declining Trend

Current knowledge suggests seagrasses are being lost at rates faster than documentation can capture.

The wide variation in estimated global coverage of seagrass meadows reflects our incomplete understanding of these ecosystems. In most countries, no generalized spatial mapping has been conducted, with seagrass locations known only from localized observations. Many areas remain completely unexplored for seagrass presence.

Global Seagrass Bioregions

Temperate North Atlantic

Covering coastal areas of North America and Europe, this bioregion features species adapted to seasonal temperature variations and strong tidal influences.

Tropical Indo-Pacific

The most diverse bioregion, stretching from East Africa to Hawaii, containing the highest number of seagrass species in the world.

Tropical Atlantic

Encompassing the Caribbean, Gulf of Mexico, and tropical Atlantic coastlines with species adapted to warm, often hurricane-affected waters.

Temperate North Pacific

Spanning the coastlines of Asia and North America, this region hosts diverse seagrass communities adapted to the unique conditions of the Pacific Ocean.

Mediterranean

A distinct bioregion with endemic species like *Posidonia oceanica*, adapted to the Mediterranean's clear, warm waters and limited tidal range.

Temperate Southern Oceans

Including southern Australia, New Zealand, and South Africa, featuring unique species adapted to the Southern Hemisphere's oceanic conditions.

Globally, total seagrass area is estimated to be more than 177,000 km² based on mapped areas and inference of unmapped areas where seagrass occurrence has been documented. This distribution is organized into six distinct bioregions, each with characteristic species and ecological conditions.

European Seagrass Species

Zostera marina

Known as eelgrass, this widespread species can be found from arctic waters along the Norwegian coast to the Mediterranean. It can survive several months of ice cover in northern regions.

Zostera noltii

Dwarf eelgrass forms dense beds in muddy sand of intertidal areas. It has higher tolerance to desiccation than *Zostera marina*, allowing it to thrive in areas exposed during low tide.

Cymodocea nodosa

Sometimes called "seahorse grass" because its beds are characteristic habitats for seahorses. This warm-water species is widely distributed throughout the Mediterranean and Canary Islands.

Posidonia oceanica

Restricted to the Mediterranean Sea, this endemic species forms extensive meadows from shallow waters to depths of 50-60 meters in areas with very clear water.

Despite their terrestrial origins, seagrasses are well adapted to the marine environment and can be found from the intertidal zone at the shore to depths down to 50-60 meters in European waters. The four European species are easily identifiable and their geographical distribution is well documented.

Common Characteristics of European Seagrasses

1

Leaf Structure

The visible part consists of shoots or leaf bundles with 3-10 linear leaves, creating the meadow canopy that provides habitat and performs photosynthesis.

2

Rhizome Network

Shoots attach to horizontal and/or vertical rhizomes that creep within or atop the sediment, forming an interconnected underground network.

3

Root System

Roots penetrate into deeper layers of the seafloor, anchoring the plant and absorbing nutrients from the sediment.

4

Clonal Growth

Rhizomes divide to form new leaf bundles, creating genetically identical shoots that function as a single interconnected individual.

European seagrass species share several morphological characteristics despite their visual differences. This common structure allows them to perform similar ecological functions across different habitats and regions, from the cold waters of the North Sea to the warm Mediterranean.

***Zostera marina* (Eelgrass)**

Distribution

Found from arctic waters along the northern Norwegian coast to the Mediterranean. Very abundant in the Baltic Sea, the North Sea, and along the Atlantic coasts down to northern Spain. In the Mediterranean, it appears mostly as small isolated stands.

Morphology

Shoots have 3-7 leaves with width varying between 2mm for young plants and up to 10mm for large individuals. Leaves are usually 30-60cm long but may reach up to 1.5m in beds on soft sediments at intermediate depths.

1

2

3

4

Habitat

Predominantly subtidal, growing down to 10-15 meters depth depending on water clarity. Most often perennial, though annual stands are found intertidally in the Wadden Sea.

Identification

Easily identified by terminal shoots growing only on horizontal rhizomes, creating distinctive meadow patterns on the seafloor.

***Zostera noltii* (Dwarf Eelgrass)**

- 1
- 2
- 3

Distribution

Distributed from the southern coasts of Norway to the Mediterranean Sea, the Black Sea, the Canary Islands, and recorded as far south as the Mauritanian coast, showing its adaptability to different water conditions.

Habitat

Forms dense beds in the muddy sand of intertidal areas where *Zostera marina* is sparse due to its lower tolerance to desiccation. This habitat specialization allows the two species to coexist in the same regions.

Morphology

Features small leaf bundles with 2-5 narrow leaves attached to a horizontal rhizome. Each rhizome holds many shoots on short branches separated by rhizome segments. The leaves are 0.5-2mm wide and 5-25cm long.

Cymodocea nodosa (Seahorse Grass)

Cymodocea nodosa, proposed to be called 'seahorse grass' due to its characteristic habitat for seahorses, is a warm water species widely distributed throughout the Mediterranean, around the Canary Islands, and down the North African coast. The species does not extend further north than the southern coasts of Portugal.

It can be found from shallow subtidal areas to very deep waters (50-60m). *Cymodocea nodosa* has leaf bundles consisting of 2 to 5 leaves. The leaves are 2 to 4mm wide and from 10 to 45cm long. The species is best identified by its vertical rhizomes and the long, white or pink segments of the horizontal rhizomes.

Posidonia oceanica

Mediterranean Endemic

Posidonia oceanica is restricted to the Mediterranean Sea, with its distribution stopping at the border where Mediterranean and Atlantic waters mix in the western part of the Mediterranean Sea. It's the most widespread higher plant in the Mediterranean.

Depth Range

This remarkable species grows from shallow subtidal waters to depths of 50-60m in areas with very clear waters, demonstrating its exceptional adaptation to low-light conditions at greater depths.


Distinctive Morphology

Posidonia oceanica has leaf bundles consisting of 5 to 10 leaves attached to vertical rhizomes. The leaves are broad (5 to 12mm) with length usually varying from 20 to 40cm but may reach up to 1m in favorable conditions.

Identification Features

The species is easily identified by its dense, broad leaves and the hairy remains around the rhizomes and lower parts of the shoots, giving it a distinctive appearance compared to other Mediterranean seagrasses.

Ecosystem Services of Seagrasses

Seagrass ecosystems provide a wide variety of services that support human well-being around the world. It is estimated that more than 1 billion people live within 100km of a coast with seagrass meadows, potentially benefiting from their provisioning, regulating and cultural services.

Seagrasses play a significant global role in supporting food security, mitigating climate change, enriching biodiversity, purifying water, protecting coastlines, and controlling diseases. These ecosystem services translate to direct economic and social benefits for coastal communities and beyond.

Seagrasses Support Marine Biodiversity

Megafauna Habitat

Seagrass meadows provide critical feeding grounds for threatened marine megafauna like green sea turtles, which graze directly on seagrass blades. These endangered species depend on healthy seagrass ecosystems for their survival.

Nursery Grounds

The complex structure of seagrass meadows creates perfect nursery habitat for countless fish species, including many commercially important ones. Juvenile fish find both food and protection from predators within the seagrass canopy.

Invertebrate Diversity

A rich community of invertebrates thrives within seagrass meadows, from tiny crustaceans to mollusks and echinoderms. These organisms form the base of complex food webs that support higher trophic levels.

The provision of shelter, feeding and nursery grounds are critical ecosystem services delivered by seagrasses worldwide, as evidenced by the high diversity and abundance of fauna within seagrass meadows. Many of these animals are of special interest and include threatened, endangered or charismatic species.

Seagrasses Support Marine Biodiversity

Megafauna Habitat

Seagrass meadows provide critical feeding grounds for threatened marine megafauna like green sea turtles, which graze directly on seagrass blades. These endangered species depend on healthy seagrass ecosystems for their survival.

Nursery Grounds

The complex structure of seagrass meadows creates perfect nursery habitat for countless fish species, including many commercially important ones. Juvenile fish find both food and protection from predators within the seagrass canopy.

Invertebrate Diversity

A rich community of invertebrates thrives within seagrass meadows, from tiny crustaceans to mollusks and echinoderms. These organisms form the base of complex food webs that support higher trophic levels.

The provision of shelter, feeding and nursery grounds are critical ecosystem services delivered by seagrasses worldwide, as evidenced by the high diversity and abundance of fauna within seagrass meadows. Many of these animals are of special interest and include threatened, endangered or charismatic species.

Pathogen Removal

Seagrasses can remove microbiological contamination from the water, reducing exposure to bacterial pathogens for fish, humans, and invertebrates. This natural filtration process helps maintain healthier marine environments.

Bioactive Compounds

Seagrasses produce bioactive secondary metabolites with antibacterial and antifungal activity. Extracts from tropical species like *Halophila stipulacea*, *Cymodocea serrulata*, and *Halodule wrightii* have shown activity against human pathogens.

Coral Protection

Coral reefs benefit from adjacent seagrass meadows, with coral disease levels halved when seagrasses are present. This protective relationship highlights the importance of maintaining diverse coastal ecosystems.

Algal Bloom Control

Seagrass meadows can control harmful algal blooms through algicidal and growth-inhibiting activities against the microalgae causing the blooms, helping maintain ecosystem balance.

Seagrasses Mitigate Climate Change

19.9Pg

Carbon Storage

Global estimate of organic carbon stored in seagrass ecosystems, making them significant carbon sinks.

2

Carbon Sources

Carbon is sequestered both as seagrass biomass and through trapping organic particles from adjacent ecosystems.

1000s

Years of Storage

Carbon deposits in seagrass sediments can remain for millennia if left undisturbed.

↑O₂

Oxygen Production

Seagrasses produce oxygen through photosynthesis, benefiting the marine environment.

Seagrass meadows are significant carbon sinks at the global scale with high capacity for taking and storing carbon in the sediment, also known as 'blue' carbon. For this service, seagrass ecosystems have great potential in combating climate change, with benefits for the entire planet.

The anoxic conditions of seagrass sediments enhance the preservation of the sedimentary carbon, leading in some cases to the formation of large carbon deposits that can remain for millennia if left undisturbed.

Carbon Storage in Seagrass Ecosystems

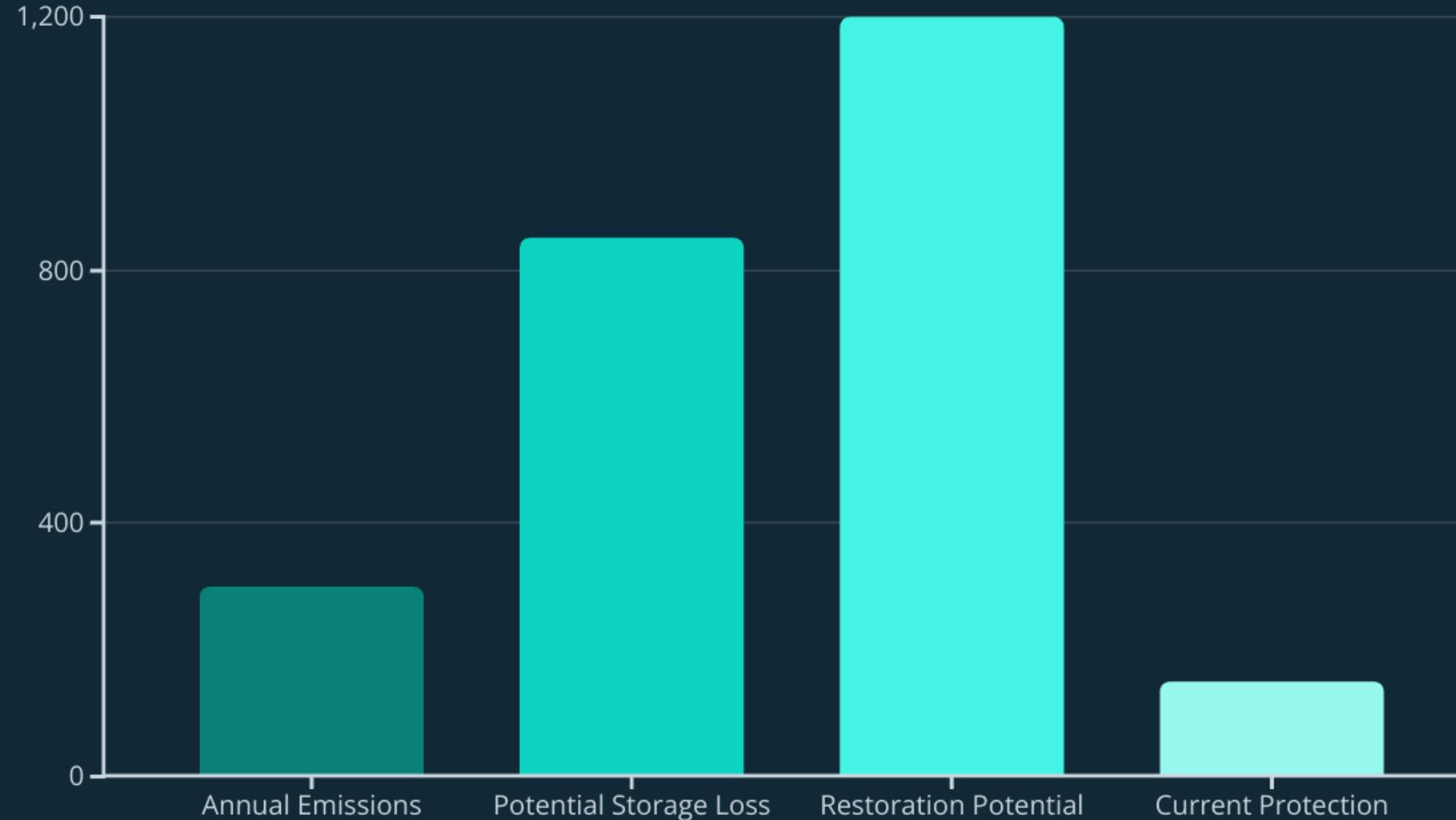
Above-ground Biomass

1 The carbon stored in leaves and stems is considered a short-term carbon sink, as this material is more prone to grazing, export, or decomposition. However, it still plays an important role in the overall carbon cycle.

Below-ground Biomass

2 Rhizomes and roots store carbon in more stable forms, protected from rapid decomposition by the low-oxygen conditions in the sediment. This represents a medium-term carbon storage mechanism.

Sediment Carbon


3 The largest and most stable carbon reservoir is in the sediment itself, where organic matter from both the seagrass and other sources becomes buried and preserved for centuries to millennia under anoxic conditions.

Allochthonous Carbon

4 Seagrass meadows trap and store organic particles derived from adjacent ecosystems, acting as a "carbon vacuum" that removes carbon from the broader marine environment.

The capacity of seagrasses to sequester carbon varies among species, meadow characteristics, and environmental conditions. Generally, the largest organic carbon deposits occur in undisturbed meadows formed by large, persistent species with complex canopies in sheltered, shallow environments with moderate nutrient inputs.

Seagrass Loss and Carbon Emissions

The loss of seagrass meadows leads to reduced carbon sequestration and storage capacity and to more CO₂ emissions derived from the remineralization of the soil carbon deposits. With present rates of loss, seagrasses are estimated to release up to 299 Tg carbon per year.

Similar to what happens with the degradation of terrestrial carbon sinks, the loss of seagrass ecosystems may significantly contribute to anthropogenic CO₂ emissions and to the acceleration of climate change. Despite their significant role as carbon sinks, seagrasses have been traditionally overlooked in greenhouse gas emission accounting inventories.

Blue Carbon Strategies

2009 Seminal Reports

Publications by Nellemann et al. and Laffoley & Grimsditch highlighted the potential of restoring and conserving seagrass meadows as a climate change mitigation approach within a novel framework termed "blue carbon strategies."

Carbon Standards

Development of carbon standards like the Verified Carbon Standard allows restoration projects to benefit from carbon credits, creating financial incentives for seagrass conservation.

IPCC Guidelines

The Intergovernmental Panel on Climate Change developed guidelines supporting the reporting of greenhouse gas emissions or sequestration derived from the conversion and restoration of seagrass meadows within countries' national inventories.

Future Implementation

Although no projects have used seagrass as a tool for emissions reduction to date, the markets and methods are currently being developed and likely to be tested and applied soon.

Since the initial reports, significant advances in science and policy have been made towards implementing blue carbon strategies. However, challenges remain, including the lack of carbon sequestration data for some regions, incomplete seagrass mapping, spatial variability in greenhouse gas emissions, and uncertainties related to legal aspects such as land tenure and tidal boundaries.

Seagrasses Mitigate Ocean Acidification

1 Photosynthetic Carbon Uptake

The high productivity of seagrasses affects the carbonate chemistry of surrounding seawater due to the large quantities of dissolved inorganic carbon taken up during photosynthesis. This metabolic activity helps counteract acidification locally.

2 pH Buffering

Seagrasses tend to increase seawater pH during the daytime, potentially offsetting the deleterious effects of increasing anthropogenic CO₂ in the seawater. This creates localized zones of higher pH within and around seagrass meadows.

3 Refuge for Calcifying Organisms

Marine organisms, particularly calcifying species such as corals and shellfish living within or adjacent to seagrasses, may benefit from this service by finding a local refugium from ocean acidification effects.

Although their role in buffering ocean acidification depends on environmental conditions, healthy seagrass meadows can contribute to enhancing the resilience of vulnerable species to ocean acidification in the short-term. This ecosystem service becomes increasingly valuable as ocean pH continues to decrease due to rising atmospheric CO₂ levels.

Coastal Protection Services

Wave Energy Reduction

Seagrass leaves reduce flow velocity and decrease wave energy as water moves through the meadow. Studies have shown wave energy reductions of up to 40% in areas with dense seagrass coverage, providing significant protection to shorelines.

Sediment Stabilization

The complex root and rhizome systems of seagrasses prevent erosion and stabilize the sediment. This anchoring effect helps maintain coastline integrity even during storm events and prevents valuable land from being washed away.

Beach and Dune Formation

Seagrass litter that accumulates on beaches contributes to stable dune formation. In the case of large species like *Posidonia*, thick piles of beachcast material called banquettes can reach up to 3m in height, creating natural barriers.

Sedimentation Enhancement

Seagrass meadows enhance vertical accretion of sediments and seabed elevation through the accumulation of below-ground biomass and particles trapped from the water column, helping coastlines keep pace with sea level rise.

Seagrass meadows play an important role in protecting coastal areas from erosion, flooding, and storm surges. This natural coastal defense system becomes increasingly valuable as climate change intensifies storm events and accelerates sea level rise.

Natural Infrastructure for Climate Adaptation

Self-Repairing Systems

Unlike engineered "grey" infrastructure that requires constant maintenance, seagrass meadows are living systems capable of self-repair and natural regeneration after disturbances. This makes them more sustainable long-term solutions for coastal protection.

Healthy seagrass ecosystems can adapt to changing conditions, including gradual sea level rise, by either increasing soil elevation through sediment accumulation or migrating inland if space allows.

In tropical areas, seagrasses together with sediment-producing calcifying algae have been shown to be effective natural solutions for nourishing beaches, offering a self-sustainable alternative to traditional engineering approaches and increasing coastal resilience to climate change. This highlights seagrasses as one of the best ecosystems for eco-engineering, nature-based solutions.

Grey vs. Green Infrastructure

Traditional engineering solutions based on building "grey" infrastructures (dykes, seawalls) involve direct loss of coastal habitats. Such infrastructures need to be maintained and upgraded to ensure their efficiency in future climate change scenarios, making them economically unsustainable.

In contrast, natural barriers from ecosystems such as seagrasses have the capacity to self-repair and adapt while also providing multiple other ecosystem services, creating a more holistic and sustainable approach to coastal management.

Seagrasses Support World Fisheries

Commercial Fisheries

Seagrass meadows provide valuable nursery habitat to over one-fifth of the world's largest 25 fisheries, including walleye pollock, the most landed species on the planet. This nursery function directly supports commercial fishing industries worth billions of dollars annually.

Subsistence Fishing

In cases where seagrass meadows are in close proximity to communities, they often serve as important fishing grounds for local food supply. Invertebrate gleaning in seagrass meadows is an accessible fishing activity due to the shallow nearshore environment.

Seagrass meadows are of fundamental importance to world fisheries production of both vertebrates and invertebrates in various ways. The benefits often extend beyond local communities, providing "extralocal" benefits to people who may live far from the seagrass meadows themselves.

Recreational Fishing

Seagrass fisheries around the world have recreational value, attracting anglers who target prized sport fish that depend on these habitats. This recreational fishing generates significant tourism revenue for coastal communities.

Invertebrate Fisheries in Seagrass Meadows

Invertebrate gleaning fisheries occurring within seagrass meadows are considered to be an accessible fishing activity mainly due to their shallow nearshore environment and the ease of collecting such fauna. In many parts of the Indo-Pacific region, these gleaning fisheries are vital for maintaining daily protein needs and alleviating poverty.

Seagrasses also have a range of indirect roles in enhancing fisheries, such as providing a trophic subsidy to offshore or deeper water fisheries or filtering terrestrial run-off. These ecosystem services connect seagrass habitats to broader marine food webs and fisheries productivity beyond their immediate boundaries.

Future of Seagrass Fisheries

Climate Resilience

Seagrass meadows may be less vulnerable to climate change than other habitats like coral reefs.

Management Needs

Integrated approaches connecting habitat conservation with fisheries management are essential.

In the context of a changing global environment where many marine habitats such as coral reefs are increasingly becoming degraded, fishers may need to compensate by exploiting different habitats and locations. As potentially more climate-resilient habitats, many seagrass meadows are likely to become more highly targeted for their fish assemblages, placing their sustainability in doubt.

In many areas (for example, the United Kingdom) extensive seagrass loss has occurred outside the realm of recent recorded history, with the loss overshadowed by wholesale overexploitation of fisheries. This "shifting baseline" has led to habitat conservation being disconnected from fisheries management.

Documenting Seagrass-Fishery Connections

Limited Documentation

Although there is widespread recognition that seagrasses support fisheries, there are limited documented examples of the consequences of seagrass loss on associated fisheries. This knowledge gap hinders effective management and conservation efforts.

Historical Context

In many areas, extensive seagrass loss occurred before modern scientific monitoring began. This historical loss has been overshadowed by the wholesale overexploitation of fisheries, creating a "shifting baseline" in our understanding of marine ecosystems.

Management Disconnect

The role of habitat in supporting fisheries has been poorly recognized, causing biodiversity and habitat conservation in the coastal seascapes to be disconnected from fisheries management approaches and policies.

Research Needs

More studies quantifying the specific contributions of seagrass habitats to fisheries productivity are needed to inform integrated management approaches that protect both the habitat and the fisheries it supports.

Bridging the gap between seagrass conservation and fisheries management requires better documentation of the ecological and economic connections between healthy seagrass ecosystems and productive fisheries. This integrated approach is essential for sustainable management of coastal resources.

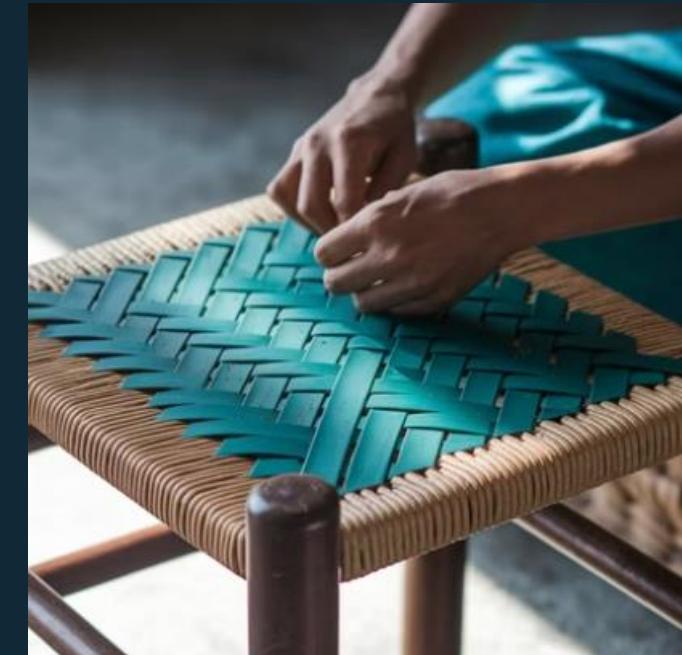
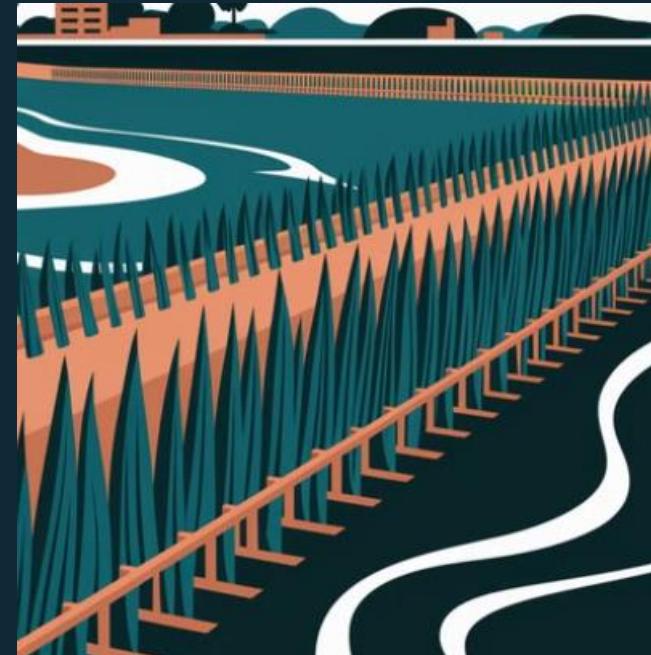
Cultural Services: Traditional Uses

Packing Material

The leaves of *Posidonia oceanica* were traditionally used as packing material to transport fragile items like glassware and pottery throughout Mediterranean countries. They were also used to ship fresh fish from coastal areas to inland cities, preserving the catch.

Agricultural Uses

As parasites thrived less in *P. oceanica* leaves than in straw, they were used as cattle bedding in stables. When straw was scarce, dry *P. oceanica* leaves were also used to make adobes and as roof insulation in southeastern Spain and the Balearic islands.



Although seagrasses might not be widely known by the public today, they were familiar and valuable resources for coastal communities throughout history. Their medicinal uses included the alleviation of skin diseases like acne and pain in legs caused by varicose veins.

Bedding Material

Seagrass leaves were widely used as filling material for mattresses and cushions, a practice popularized throughout Italy by Pope Julius III in the 16th century. Respiratory infections seemed to be prevented when sleeping on this type of bedding.

Cultural Services: Building Materials

In the Netherlands, eelgrass leaves have been used as constituents of dikes ("wierdyken"), providing natural reinforcement to these critical coastal protection structures. Zostera marina was the preferable stuffing of baby mattresses until the 1950's, and the leaves are still used today in traditional chair seats.

Across Europe, Zostera marina leaves have been used as roof covering for farm houses, providing excellent natural insulation and weather protection. The durability of these materials speaks to the remarkable properties of seagrass as a building material, with some structures lasting for generations.

Economic Value of Seagrass Ecosystems

15837

€/ha/year

Minimum estimated value of services provided by seagrass ecosystems.

100x

Value Comparison

Seagrass ecosystems are two orders of magnitude more valuable than croplands.

1980s

Valuation Beginning

Economic assessment of seagrass value began in the late 20th century.

Growing Recognition

Awareness of seagrass economic value continues to increase.

The large knowledge about the biology and ecology of seagrasses gained during the last third of the 20th century has driven increased awareness of the economic value of seagrasses to humans. The biological resources and ecological services provided by seagrasses are based on the physical structure of the plants themselves and the underwater meadows they form, their biological activity, and that of the associated fauna and flora.

Even with limitations and caveats in these economic estimates, they highlight the extraordinary importance of seagrass ecosystems compared to other habitats and land uses. This economic valuation helps justify conservation efforts and policy decisions that protect these valuable marine resources.

Tourism and Recreation Value

1

Sport Fishing

The Quintana Roo region in Mexico is famous for its sport fish populations of tarpon, bonefish, snook and permit, with much of the recreational fishing activity occurring in the seagrass lagoons of the peninsula, generating significant tourism revenue.

2

Wildlife Viewing

Many tourists flock to seagrass areas in Akumal, Mexico to swim with green turtles, and to Marsa Alam in Egypt to snorkel and dive with dugongs. These charismatic megafauna depend on healthy seagrass habitats for their survival.

3

Birdwatching

In temperate areas, brant geese and numerous other birds attract birdwatchers to locations with seagrass meadows, such as the Solent in the United Kingdom and Puget Sound in the United States of America.

4

Coastal Tourism

The clear waters and biodiversity associated with healthy seagrass meadows enhance the overall appeal of coastal destinations, contributing to the broader tourism economy even when visitors aren't specifically aware of the seagrass itself.

The value of seagrasses for tourism and recreation is often not acknowledged, despite the vast indirect income they provide to such industries. Tourists may not realize they're benefiting from seagrass ecosystems when they enjoy activities in coastal areas, creating a disconnect between the economic value and public awareness.

Cultural Identity and Heritage

1 Traditional Livelihoods

In many regions of the world, seagrass meadows represent a traditional way of life and identity for fishers and communities. They are directly associated with food and livelihoods that have sustained coastal populations for generations.

2 Spiritual Significance

From a religious perspective, the opercula of molluscs collected in seagrass meadows have been used to produce ceremonial incense. These cultural practices connect communities to the marine environment through spiritual traditions.

3 Archaeological Preservation

Seagrass deposits play a key role in preserving valuable underwater archaeological and historical heritage across the world, such as Roman and Phoenician shipwrecks, prehistoric settlement sites, and submerged ancient cities.

4 Historical Archives

Seagrass meadows constitute historical archives of human cultural development over time, with sediment layers containing artifacts and environmental information that help scientists reconstruct past human-environment relationships.

Seagrass in the Fermentation Industry

Research Beginnings

Research in bioethanol production has been on the rise since 2000, with scientists exploring various aquatic plants as potential feedstocks. This includes freshwater species like water hyacinth and marine macroalgae such as *Saccharina japonica* and *Ulva* species.

Japanese Innovation

In 2014, scientists from Japan studied the possibility of using *Zostera marina* seeds to obtain fermented products containing ethanol at high concentrations. They processed eelgrass seeds following methods similar to those used in the manufacture of Japanese sake or rice wine.

Impressive Results

This innovative process allowed the production of 16.5 percent ethanol, which is stronger than most wines. The high starch content of seagrass seeds makes them particularly suitable for fermentation processes.

Future Potential

As *Zostera marina* is widespread in the northern hemisphere, it has potential to be utilized not only for biofuel but also by food and beverage industries. It could potentially be harvested as a sustainable crop, allowing for the development of a new marine fermentation industry.

Seagrass as Biochar

Seagrass Wrack Utilization

Seagrass wrack (washed up seagrass on coastal areas) can be beneficial for both terrestrial and marine ecosystems, as well as for humans. Rather than treating this material as waste, it can be transformed into valuable biochar with multiple applications.

The collection and processing of seagrass wrack provides a sustainable way to utilize material that might otherwise be removed from beaches as "waste," turning it into a resource with environmental benefits.

Biochar has recently gained recognition as a tool to enhance the sequestration of atmospheric carbon, thereby helping to mitigate climate change. The high carbon content and stable structure of biochar allows it to persist in soils for hundreds to thousands of years, effectively removing that carbon from the atmospheric cycle.

Biocharring Process

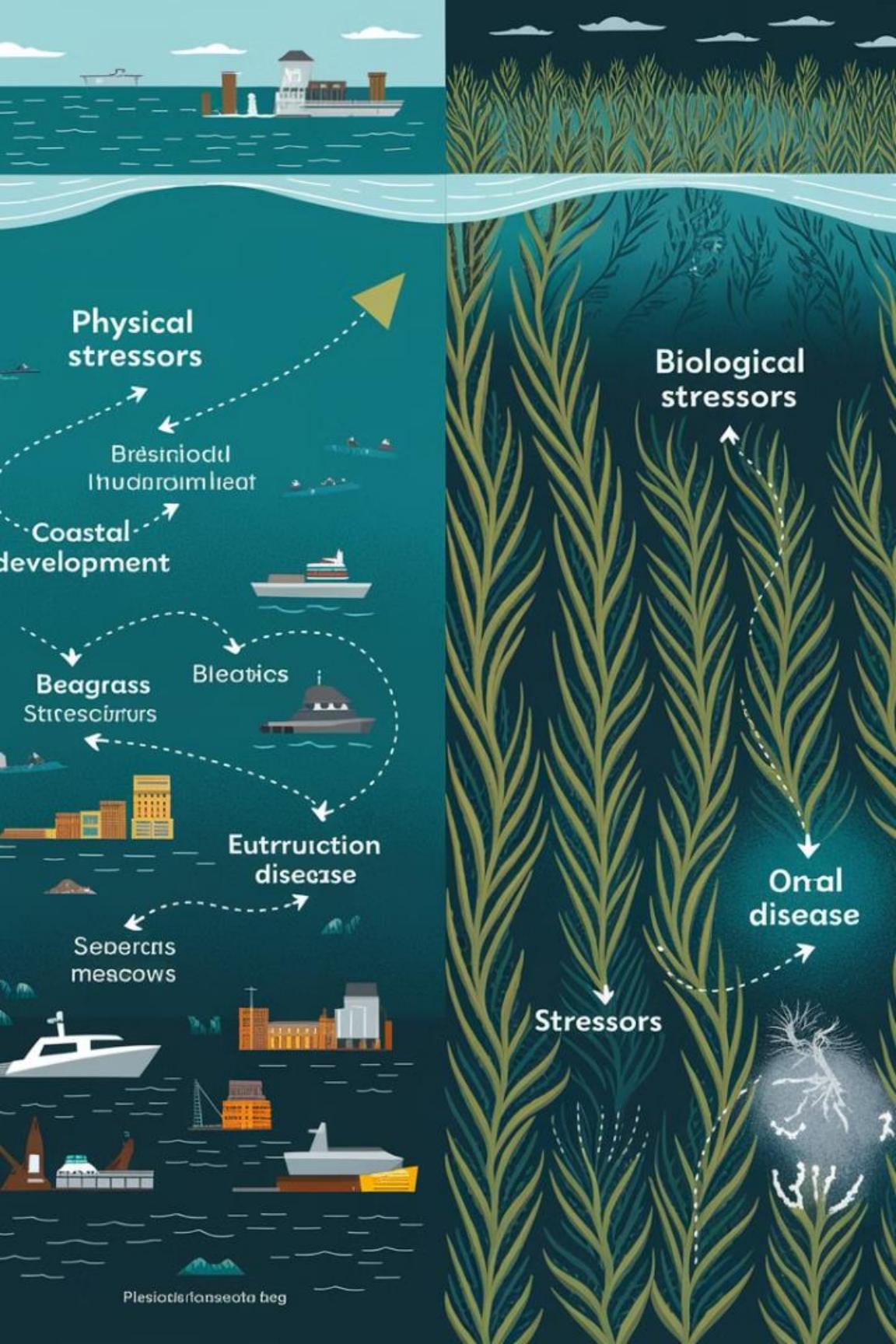
Biocharring is the process of converting biomass through thermochemical processes in an oxygen-limited environment to create a solid material with high carbon content. This process effectively locks carbon into a stable form that resists decomposition.

Seagrasses were found to have high conversion efficiency, which was comparable to high-quality terrestrial biochar products. This makes them an excellent candidate for biochar production, with potential applications in agriculture, water filtration, and carbon sequestration.

Seagrass in Medicine

Despite promising achievements in pharmaceutical biotechnology and the development of new drugs, cancer and infectious diseases remain the main causes of mortality and morbidity worldwide. Green synthesis has been introduced as a simple, economically viable, and environmentally friendly alternative approach for the synthesis of nanoparticles.

In a typical green synthesis, biological compounds (such as plant extracts) act as both reducing and stabilizing agents, leading to the production of desirable nanoparticles with predefined features. The seagrass *Cymodocea serrulata* has proven to be a valuable bioresource for generating rapid and eco-friendly bioactive nanoparticles specifically for lung cancer therapy, opening new frontiers in marine-based medicine.


Module 2: Threats to Seagrasses

Seagrasses are a key marine habitat that has been globally declining since the 1930s. The most recent census estimates that 7 percent of seagrass is being lost worldwide per year—equivalent to a football field of seagrass every 30 minutes.

Evaluating the threats to and resilience of seagrass is critical for identifying effective management strategies. The highest impact threats come from urban/industrial run-off, urban/port infrastructure development, agricultural run-off, and dredging. Climate-related threats include increased frequency and intensity of tropical storms, with uncertainty about the impact of rising temperatures and sea level rise.

Şevki Danacıoğlu

Natural and Anthropogenic Stressors

Physical Factors

Seagrass meadows face physical stressors including increased temperatures, salinity changes, hypoxia, extreme weather events, sedimentation, and altered wave and current dynamics.

Biological Factors

Biological threats include invasive species, algal blooms, eutrophication, altered grazing patterns, competition, and disease.

Source Categories

Threats can be land-based, sea-based or climate related, all of which can affect seagrasses either directly or indirectly.

Land-based Threats

1 Proximity to Human Activity

Seagrasses are predominantly found in shallow coastal waters, placing them in close proximity to areas most heavily used by humans.

2 Agricultural Run-off

Run-off from agricultural regions carries excessive sediments, nutrients, and toxicants like herbicides into seagrass habitats.

3 Urban and Industrial Pollution

Urban and industrial regions contribute contaminants and pulses of reduced salinity that damage seagrass ecosystems.

Eutrophication and Pollutants

Eutrophication Process

Land-based run-off can indirectly impact seagrass meadows through eutrophication—a state of excessive plant and algal growth caused by nutrients (predominantly nitrogen and phosphorus) in the water.

High-Risk Regions

The threat from pollutants is particularly high in regions with high levels of agricultural activity or urban development. Rivers can transport contaminants for hundreds or even thousands of kilometers.

Long-Term Effects

Sediments can store contaminants for long periods, making the effects far-reaching and long-standing. These threats can recur due to resuspension of sediments through wave energy, reducing light penetration.

Coastal Development Impacts

Land Reclamation


Urban structures built on top of former seagrass habitat permanently and irreversibly remove seagrasses or shade them from light.

Nearshore Development

Developments can shade seagrass habitat and create "coastal squeeze" which interacts with sea level rise to reduce available habitat.

Habitat Conversion

Coastal developments reduce or convert natural shorelines (for example, into rock walls), limiting the space available for seagrasses, saltmarshes, and mangroves to migrate as sea levels rise.

Sea-based Threats

Dredging

Direct physical damage occurs from dredging activities.

Dumping of dredge spoil can smother seagrass, while resuspension of fine sediments affects seagrasses tens of kilometers away by releasing contaminants.

Boating

Propellers, moorings, and shipping accidents cause direct physical damage. Boating also creates wave energy that re-suspends sediments and reduces light penetration.

Fishing

Especially trawling, causes direct physical removal of seagrasses.

Fishing can alter species composition and grazing regimes, potentially resulting in reduced seagrass biomass.

Additional Sea-based Impacts

1

Aquaculture

Structures physically displace and shade seagrasses directly. They also cause widespread indirect shading and stress due to increased turbidity, nutrients, contaminants, and potential introduction of exotic species and pathogens.

2

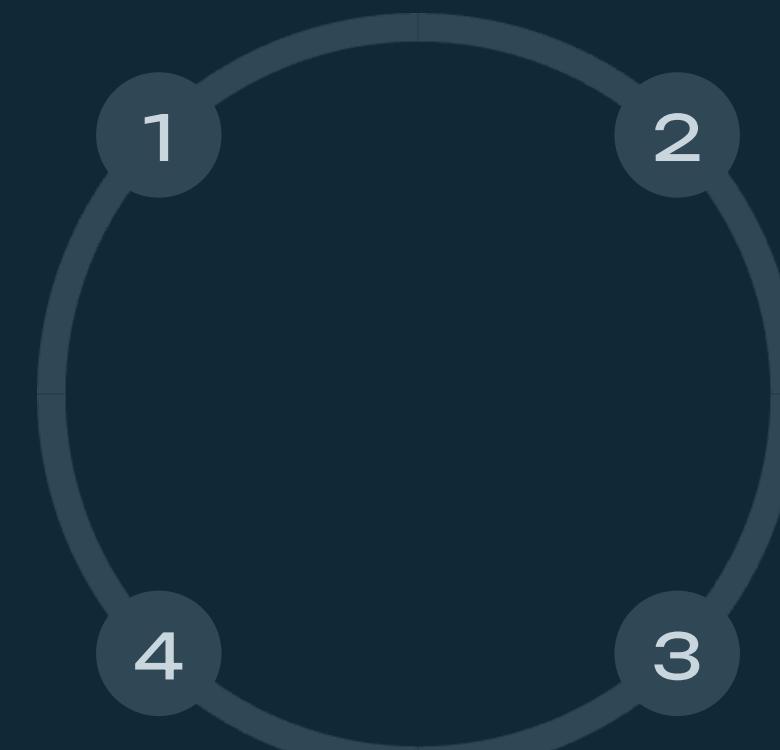
Boating and Fishing

These activities often have acute, localized effects related to direct removal of seagrasses. They also have indirect effects, such as long-term damage caused by oil spills from refueling mishaps and accidents.

3

Altered Grazing Regimes

Fishing can alter the composition of animal species, potentially leading to trophic cascades that cause algal overgrowth or changes in seagrass reproductive processes like seed dispersal.


Climate-related Threats

Rising Temperatures

Increasing sea and air temperatures can dramatically reduce seagrass extent over short and long timescales, affecting growth and potentially causing mortality during prolonged warming events.

Extreme Weather

Increased frequency and intensity of storms and altered rainfall patterns can directly damage seagrass meadows and increase land-based runoff.

Sea Level Rise

Changes in water depth affect light availability and can reduce suitable habitat area for seagrasses, especially in areas with hardened shorelines.

Ocean Acidification

Changes in water chemistry may affect seagrass productivity, though responses are difficult to predict and depend on other limiting conditions.

Temperature Rise Effects

Seagrasses near the edge of their distributional range are most at risk from rising temperatures. Temperature rise has already triggered changes in species distribution, causing grazing animals to move from tropical to temperate areas, altering grazing pressure on seagrasses.

Unusually warm temperatures are also associated with the wasting disease that decimated eelgrass across the northern hemisphere in the 1930s. Under rising sea levels, seagrass habitats would naturally migrate to more elevated areas, but colonization could be impeded by unfavorable conditions.

Ocean Acidification Impacts

↑CO₂

Increased Carbon

Rising partial pressure of carbon dioxide (pCO₂) affects marine ecosystems differently.

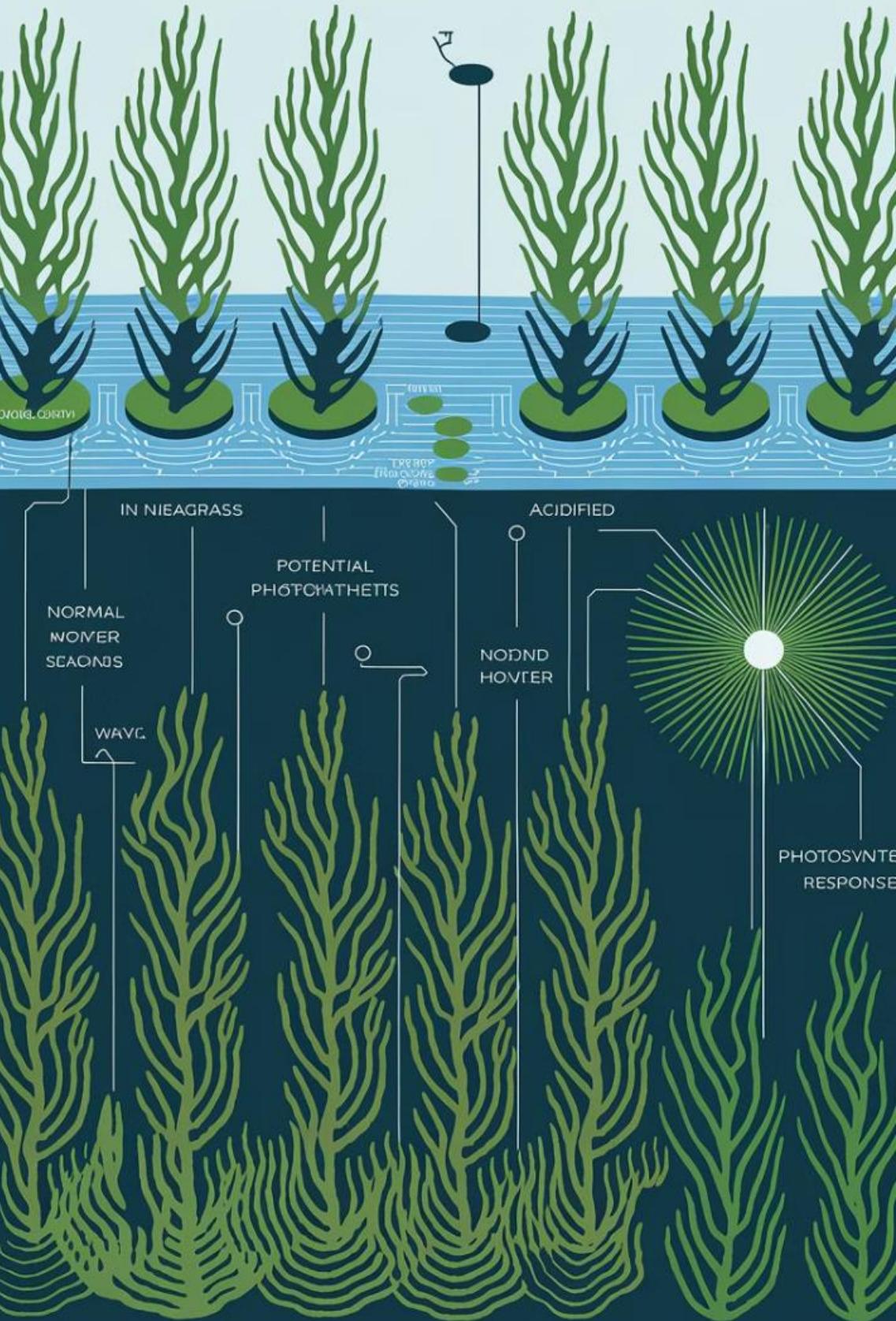
?

Uncertain Benefits

Insufficient evidence to determine if seagrasses will benefit from ocean acidification.

↓

Downregulation


Short-term productivity gains may not persist in the long term.

≠

Variable Conditions

Inshore fluctuations in pCO₂ are highly variable compared to offshore areas.

Seagrasses' capacity to respond to increasing pCO₂ depends on other limiting conditions, such as light availability. There can be downregulation in the response to pCO₂, so short-term productivity gains observed in experiments may not be realized long-term. The high variability of inshore pCO₂ fluctuations adds further complexity to predicting future responses.

Extreme Weather Events

1

Increasing Intensity

Climatic events including hurricanes, cyclones, and extreme rainfall are likely to become more intense in the future, though regional variations will occur.

2

Direct Physical Damage

High water energy associated with cyclones can directly uproot seagrass and mobilize seedbanks, leaving modified seascapes vulnerable to recalcitrant degradation.

3

Far-reaching Impacts

Land-based run-off and pollutant loads from extreme events can have far-reaching and long-lasting effects on seagrass ecosystems.

4

Management Solutions

Promoting diverse seagrass communities and reducing chronic threats may make meadows less vulnerable to extreme events.

Module 3: Conservation of Seagrass Ecosystems and Environmental Impact Assessment Studies in Mediterranean Countries

This module explores the critical importance of seagrass ecosystems in Mediterranean marine environments and examines the environmental impact assessment frameworks across different Mediterranean countries. We'll investigate both conservation approaches and regulatory mechanisms designed to protect these vital habitats.

by Şevki Danacıoğlu

The Importance of Seagrass Ecosystems

1 Critical Habitats

Seagrass ecosystems serve as important habitats for migratory marine species, including sirenians, cetaceans, marine turtles and elasmobranchs. Their protection is vital for maintaining marine biodiversity throughout the Mediterranean region.

2 Global Recognition

The UN General Assembly Resolution 76/265 proclaimed March 1st as World Seagrass Day, highlighting the global importance of these ecosystems. The 2020 UNEP report "Out of the Blue: The Value of Seagrasses to the Environment and to People" provides comprehensive recommendations for seagrass conservation.

3 Ecosystem Services

Seagrass ecosystems provide vital services including carbon sequestration, nutrient cycling, food security, fisheries productivity, water quality enhancement and coastal protection. These services directly contribute to human wellbeing and environmental health.

Climate Benefits and Threats to Seagrass

Carbon Sequestration

Seagrass ecosystems have significant carbon sequestration and storage potential. Protecting and restoring these habitats can contribute substantially to achieving the goals of the United Nations Framework Convention on Climate Change and the Paris Agreement.

Significant Threats

Seagrass ecosystems face numerous threats including habitat degradation, pollution (including noise pollution), climate change, overfishing, bottom trawling, dredging, and coastal development. These pressures have resulted in global decline of seagrass habitats and their associated biodiversity.

Awareness and Action

There is an urgent need to raise awareness at all levels and promote actions for conservation and restoration of seagrasses. Enhancing ecosystem services and functions is crucial for achieving the Sustainable Development Goals.

International Frameworks for Seagrass Protection

Transboundary Collaboration

Many seagrass ecosystems are transboundary in nature, requiring collaborative and coordinated efforts among countries, regional organizations, international bodies, and stakeholders to conserve and sustainably manage these vital habitats.

UN Decades

The United Nations Decade of Ocean Science for Sustainable Development (2021-2030) and the United Nations Decade on Ecosystem Restoration (2021-2030) provide frameworks for seagrass conservation efforts.

International Obligations

Relevant international obligations include those in the Kunming-Montreal Global Biodiversity Framework (especially Targets 1, 2, and 3), the Paris Agreement, and the Sustainable Development Goals.

2030 Seagrass Breakthrough

The global initiative "2030 Seagrass Breakthrough," announced at UNFCCC COP28, aims to establish a collective framework of action by State and non-State actors for sustainable financing of seagrass ecosystem protection, conservation, and restoration globally by 2030.

Impact Studies in Mediterranean Countries: Overview

European Community Influence

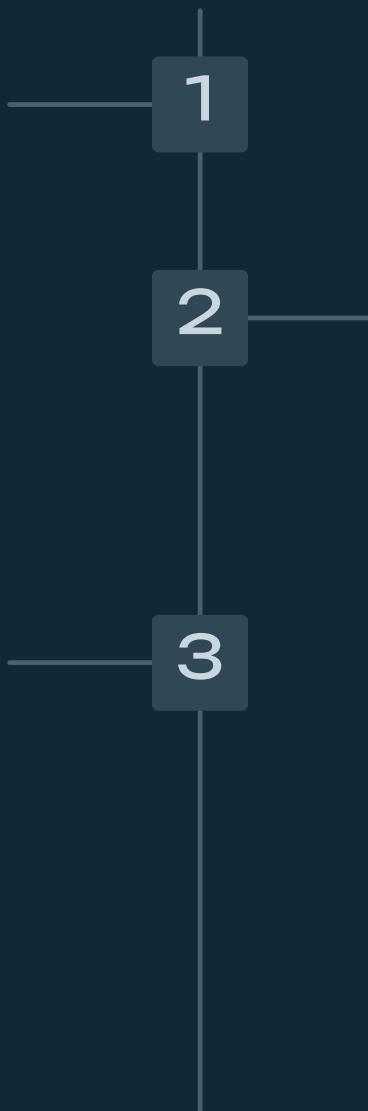
Seven Mediterranean countries (Cyprus, France, Greece, Italy, Malta, Slovenia, and Spain) belong to the European Community and are bound to apply Community Directives. Countries that joined the EU since May 2004 must harmonize their national regulations with European standards.

Varied Implementation

While the concept of environmental impact assessment is familiar to many Mediterranean countries, it does not appear systematically in all national laws. This section examines the current state of impact studies based on data provided by SPA National Focal Points.

Scope Limitations

This overview does not attempt to describe laws in all Mediterranean countries but rather provides a snapshot of environmental impact assessment frameworks across the region, with particular attention to how they address seagrass ecosystems.


European Regulations on Environmental Impact Assessment

EEC Directive 85/337

The concept of impact studies appears in the Directive on assessing the effects on the environment of certain public and private projects. This was later modified by EEC Directive 97/11, establishing the foundation for environmental impact assessment across EU member states.

Directive 2000/60/EC

The Water Framework Directive makes Environmental Impact Assessment (EIA) obligatory for activities affecting water resources. This directive establishes a framework for Community action in the field of water policy, further strengthening environmental protection measures.

Directive 2001/42/EC

This directive, adopted on June 27, 2001, complements earlier regulations by addressing the assessment of environmental effects of certain plans and programs. It applies to plans prepared by authorities at national, regional, or local levels that are required by legislative, regulatory, or administrative provisions.

Projects Requiring Impact Studies Under EU Directives

1 Energy Projects

Oil refineries (excluding lubricant production), large-scale gasification or liquification installations processing at least 500 tons of coal or bituminous schists per day, thermal power stations of at least 300 MW, and nuclear power stations (except research structures under 1 kW of permanent thermic duration).

2 Industrial Facilities

Installations for stocking or processing radioactive waste, steelworks, facilities where asbestos is extracted and processed, and chemical installations all require environmental impact assessments under EU directives.

3 Transportation Infrastructure

Heavy-use communication routes, airports with runways over 2.1 km, port infrastructures for vessels over 1,350 tonnes, and maritime routes for buildings over 1,350 tonnes all fall under mandatory impact assessment requirements.

4 Waste Management

Installations for eliminating, processing, or storing toxic waste must undergo environmental impact assessment before approval, ensuring that potential environmental hazards are identified and mitigated.

Additional Projects Subject to Impact Assessment

Discretionary Assessments

Many developments may require an impact study if member states believe their features warrant this. These include projects affecting agriculture, mining, power industry, metalwork, glass-making, chemical industry, food industry, textile, leather, wood and paper industries, rubber industry, and various infrastructure projects.

Comprehensive Scope

Impact studies must anticipate both direct and indirect effects on humans, fauna, flora, soil, air, climate, landscape, material property, and cultural heritage. This holistic approach ensures that all potential environmental impacts are considered.

Required Information

Project managers must provide a description of the project (site, design, size), measures to avoid or reduce adverse effects, data to identify environmental impacts, alternatives considered, and a non-technical summary. This information must be accessible to the public and relevant administrative authorities.

Public Participation in Environmental Impact Assessment

Public Disclosure

The complete impact assessment dossier must be made available to the public to enable opinion gathering. Administrative structures responsible for authorizing the project must also have access to all documentation.

Decision Transparency

The decision to give permission and any conditions attached to project authorization must be made available to the public. If national law permits, the elements that justified the agreement may also be disclosed to the public.

Seagrass Protection

While seagrass species are not specifically mentioned in the European Directive on EIA, the Habitats Directive (92/43/EEC) provides a legal framework for conservation of wild plants and animals and their habitats. *Posidonia* meadows are listed in Annex I as a natural habitat type requiring special conservation areas.

Environmental Impact Assessment in Albania

1

Emerging Framework

Albania has regulations concerning impact studies in the context of coastal development, though historically few such studies have been conducted. Recent efforts through a World Bank project on integrated coastal zone management are working to include EIA for Posidonia meadows in environmental impact assessment processes.

2

Seagrass Protection

While seagrass meadows like *Posidonia oceanica* and *Zostera marina* are not specifically addressed in Albanian EIA regulations, they are protected under national legal framework by a Decision of the Council of Ministers on protected species (2003).

3

Implementation Challenges

Despite having regulatory frameworks in place, Albania faces challenges in implementing comprehensive environmental impact assessments, particularly for marine ecosystems. Capacity building and institutional strengthening remain priorities.

Environmental Impact Assessment in Algeria

Legal Framework

Law n°03-10 (July 19, 2003) on environmental protection requires that development and construction projects be subjected to impact assessment studies. The application clauses are further specified by regulation.

Executive Decree

Executive Decree n°90-78 (February 27, 1990) on Environmental Impact Assessment studies explicitly refers to the protection of wild flora and fauna and natural habitats.

Assessment Components

According to Algerian regulations, an impact assessment study must include an analysis of the initial state of the environment and an analysis of the potential environmental effects of the proposed development.

Environmental Impact Assessment in Bosnia-Herzegovina

1

Adapted Framework

Bosnia-Herzegovina has a Law on Physical Planning (Official Gazette no. 9/87), adapted from former Yugoslavian law in accordance with the Dayton peace treaties. While this law mentions impact studies, it doesn't detail how they should be conducted.

2

Environmental Requirements

Under current regulations, building activities must not endanger organisms and must maintain site conditions. Development work must not cause disturbances beyond what the environment can regulate or affect people's health and safety.

3

Implementation Challenges

Studies are carried out by accredited public or private organizations, though they don't need to demonstrate competence in marine environments specifically. New laws were expected to come into force in 2001 with more detailed requirements for impact studies.

Environmental Impact Assessment in Croatia

Regulatory Framework

Regulations on impact studies in Croatia appear in Decree no. 1324/59/2000, as expected by the law on environment protection (Official Gazette n°82/94, 128/99). This decree was modified in 2004 and 2006 (Official Gazette n° 136/04, 85/06), with the Ministry of Environmental Protection and Physical Planning as the responsible body.

Seagrass Protection

While marine plant formations aren't explicitly referenced in impact study regulations, seagrass species like *Posidonia oceanica*, *Zostera marina*, and *Zostera noltii* are nationally protected through the ordinance on "Proclamation of Wild Taxa as Protected or Strictly Protected" (Official Gazette n°7/2006).

1

2

3

Required Elements

Croatian impact studies must include a description of the original condition, the planned development, anticipated impacts and nuisances, suggested mitigation measures, and post-completion monitoring. Studies are conducted by accredited private or public bodies with proven marine experience.

Environmental Impact Assessment in Egypt

1 Legal Foundation

The Law on the Environment (Law no. 4/1994) makes carrying out an impact study obligatory in Egypt. The Egyptian Environmental Affairs Agency (EEAA) is responsible for implementing this law through its Environment Development sector (EMS).

2 Study Requirements

Egyptian impact studies must describe the proposed project, present natural resources, outline steps to mitigate impacts, and provide alternative suggestions. The EMS works with university professors and disciplinary experts to assess submitted studies.

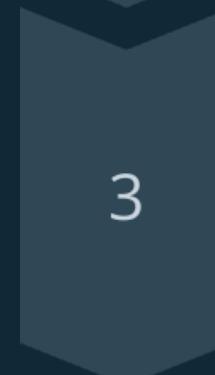
3 Implementation Focus

Between 1992-1994, projects requiring impact studies were predominantly tourist developments (84%, including marinas and jetties), with electric power stations (3%) and desalination stations (3%) making up smaller portions. Project managers have generally shown commitment to environmental protection.

Environmental Impact Assessment in France

1

Pioneer Approach


France was the first Mediterranean country to adopt impact studies, with regulations appearing in the 1976 law on nature protection. The Decree of October 12, 1977 (no. 77-1141) defined general terms for impact studies, stating that content must relate to project size and foreseeable environmental effects.

2

Enhanced Framework

The 1993 Decree (no. 93-245) supplemented and clarified the impact study procedure, requiring analysis of the original site condition, direct and indirect effects on environment, assessment methods, project justification, mitigation measures with cost estimates, and a non-technical summary.

3

Comprehensive Scope

Unlike other countries, French regulations list both installations requiring impact studies and work exempt from them. The principle is that impact studies should be the rule and exemptions the exception. Only maintenance work and major repairs are specifically excluded.

Public Participation in French Impact Studies

Public Access

If a public inquiry is required, the impact study is included in the dossier. Without an inquiry, the study must be made available to the public before work begins. The existence of the impact study must be published in regional and national press, with at least fifteen days allowed for public consultation.

Ministerial Review

The Minister of the Environment may review any impact study and has 30 days to provide an opinion. No work can begin nor public inquiry open before this period expires. For projects requiring public inquiry, the Minister's opinion should ideally be known before the inquiry starts.

Responsibility and Enforcement

The project manager ("petitioner") is responsible for the impact study and liable for incomplete or insufficient assessments. While not required to conduct the study personally, managers are encouraged to engage specialists. Absence of a required impact study may result in work stoppage.

Public Inquiry Process in France

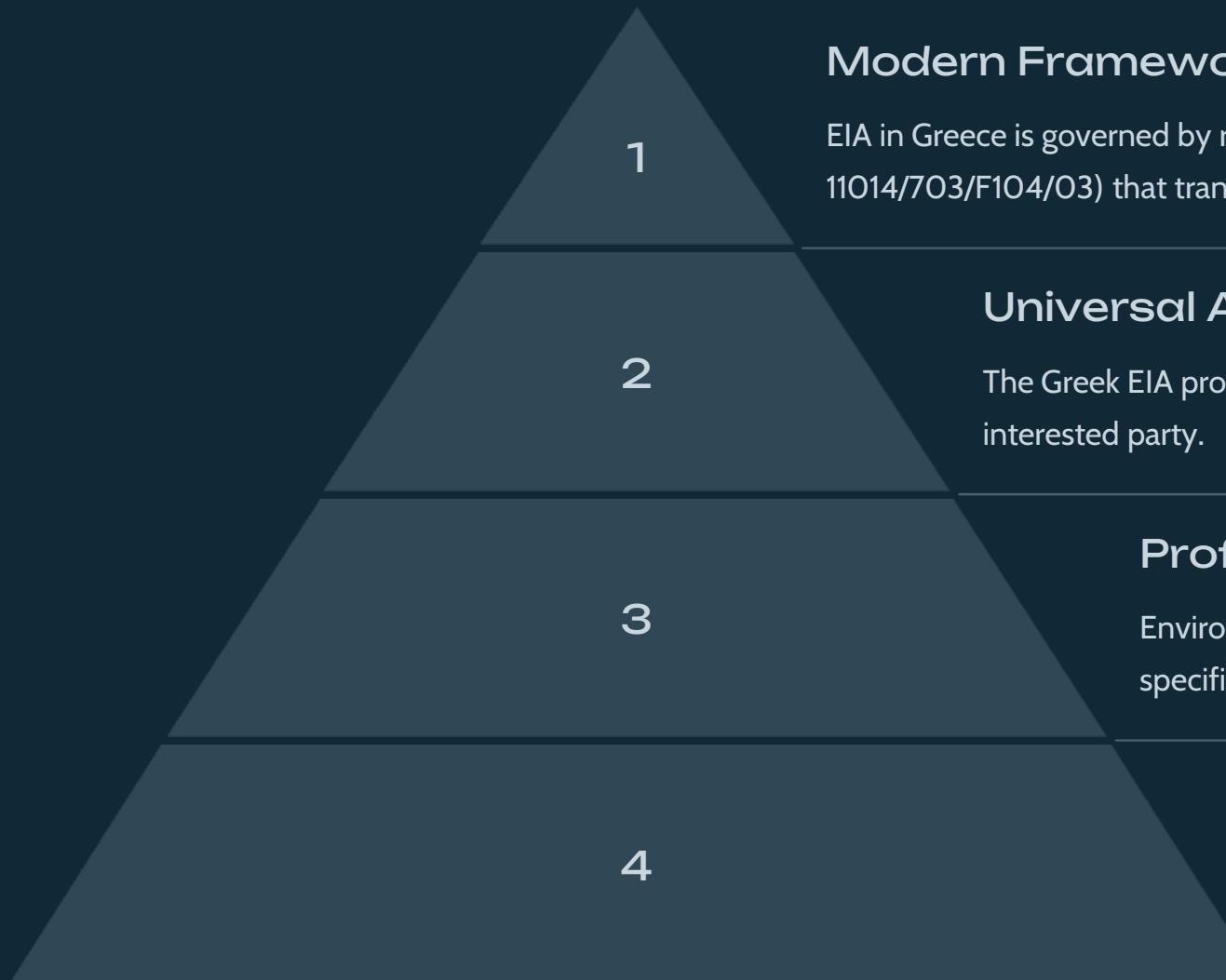
Legal Basis

Since 1983, French law has required public inquiries for developments likely to affect the environment. This ensures better public information and provides authorities with necessary decision-making elements (Law no. 86-630 of July 12, 1983).

Enhanced Protection

The 1993 Decree expanded impact study requirements to include town planning and tourist projects, integrated European Directive provisions, and made the process more effective.

The 1989 Decree specifically regulates development in areas with remarkable sites or landscapes.


Process Requirements

The public must be informed fifteen days before inquiry starts, and the inquiry must last at least one month. This process allows the public to submit suggestions, observations, and counter-proposals. The investigating commissioner's conclusions are made public, with inquiry results valid for five years.

Financial Responsibility

The project manager bears inquiry costs, except for the investigating commissioner's allowance, which is paid by the state. While public inquiries and impact studies often overlap, they remain separate processes—an inquiry can occur without an impact study and vice versa.

Environmental Impact Assessment in Greece

Greek EIA Process and Seagrass Protection

Two-Cycle Approach

The Greek EIA process follows a two-cycle approach: first, a Preliminary Environmental Statement with authorization for project type and location; second, a full Environmental Statement with final environmental terms for implementation. This approach enables intervention in project design and better application of the precautionary principle.

Required Information

Greek impact studies must include description of the original state, planned accomplishments, expected impacts and harmful effects, and measures to reduce adverse effects. The information required varies based on project type, size, and location.

Authorization Hierarchy

Depending on project type and size, authorization falls under Prefecture, Regional, or Central Environmental Services. For projects in Natura 2000 network areas (which include most important seagrass meadows), environmental authorization comes from more centralized services, with the Section of Nature Management always consulted.

Environmental Impact Assessment in Israel

Legal Framework

In Israel, the law on buildings in the maritime domain falls under the Ministry of the Interior and the 1965 Law on development and construction. This law provides development guidelines and established the Territorial Waters Committee (TWC).

Maritime Authority

The Territorial Waters Committee deals with planning and building on maritime territory and coastline. All development in these areas requires TWC approval before proceeding.

Coastal Planning

TWC decisions are based on a general national plan for coastal areas that primarily considers terrestrial use of the shoreline and several hundred meters inland. This approach focuses on land-sea interface management.

Environmental Impact Assessment in Italy

1 Established Practice

For over fifteen years, all sea development in Italy must undergo an environmental impact assessment study (VIA). Sicily, with its autonomous status, has always required environmental impact assessments for all marine operations, beyond just those mandated by European directives.

2 Legal Framework

The European Directive is adapted in Italy through a 1999 Decree (no. 152/1999) concerning "Provisions on protection of waters against pollution." Article 3.4.1.2 explicitly references marine phanerogams, stating that due to their major heritage interest, these species must be mapped and given specific monitoring.

3 Comprehensive Approach

Italian impact studies include all elements required by the European Directive plus post-development monitoring. Studies cover wide geographical areas based on preliminary project scope, with detailed assessment of environmental and biological features.

VIA Procedure Requirements in Italy

Holistic Assessment

The VIA procedure must consider each site's natural and anthropic elements and their interactions with the overall environment. Specific elements for assessment are detailed in Appendix II of the regulations.

Water Environment

Marine waters must be analyzed both as environmental elements and resources. Water analysis includes monthly physico-chemical parameter measurements at three depths. Resource assessment examines plankton and nekton to evaluate biological importance and trophic efficiency.

Air Quality

Studies must establish pre-existing air quality, project impacts on the water/air interface and marine organisms, and site meteorological features. This comprehensive approach ensures all potential atmospheric impacts are considered.

Geological Features

Studies must assess soil and subsoil geological and geomorphological characteristics. The soil's physico-chemical composition must be analyzed to determine oxidoreduction processes, substratum/organism interaction, and receptive capacity.

Vegetation Assessment and Seagrass Protection in Italy

Vegetation Analysis

Vegetation represents the most important part of Italian environmental impact studies. Vegetation must be mapped to show dominant species and bathymetric zoning. Rare and protected species must be identified, and a floristic inventory created. Phyto-sociological records may supplement these observations.

Ecosystem Evaluation

All parameters must contribute to understanding ecosystems and their functions. A 1:10,000 cartographical report of ecosystemic units must show possible anthropic pressure. Synecological indices and bio-tests help assess ecosystem functioning, self-purification ability, maturity, and quality.

Seagrass Protection

While Italian EIA law doesn't explicitly reference marine plant formations, seagrass species like *Posidonia oceanica* are nationally protected under Law n°175 (May 27, 1999). Some regions have implemented broader protections, such as Liguria's 2001 EIA regulation for projects in Sites of Community Interest including *P. oceanica* meadows.

Environmental Impact Assessment in Libya

1

Regulatory Framework

Libya has drafted regulations for impact assessment of economic projects and activities that may threaten the environment. Any entity requesting implementation, modification, or growth of an economic activity must submit an environmental classification form to the Environment General Authority with required documentation.

2

Assessment Process

The Design and Research Environment Department studies submitted documents to classify projects and determine whether an EIA is needed. EIAs must be prepared by specialized institutions or engineering firms affiliated with the Environment General Authority.

3

Evaluation Procedure

The competent authority evaluates the EIA and may request additional information before authorizing the project or requesting study revisions. This process ensures thorough environmental review before project approval.

Required Elements for Libyan Environmental Impact Assessments

1 Non-Technical Summary

The EIA must include a summary of project components in simple, non-technical language, with a copy in Arabic. This ensures accessibility of the assessment to non-specialists and the general public.

2 Project Description

A detailed project description must include objectives, implementation schedule, site information (maps, surface area, land use), water resources, environmental conditions, and existing infrastructure. This comprehensive overview establishes the baseline for impact assessment.

3 Environmental Baseline

The initial environmental state must be described with all relevant environmental data, including natural and climatic conditions, water quality and resources, air quality, and noise pollution. This establishes the pre-project conditions for comparison.

4 Impact Analysis and Management

The assessment must identify direct and indirect impacts, propose measures to reduce environmental threats, evaluate alternatives, and include an environmental management plan describing actions to ensure compliance and monitoring throughout all project phases.

Environmental Impact Assessment in Montenegro

Legal Framework

The Law of Environment (12/96) requires an EIA for projects that may have adverse effects on the environment. As part of the EIA, an environmental protection program must address impacts during accidents or emergencies, register hazardous substances, and establish implementation deadlines.

Regulatory Evolution

In 2005, Montenegro adopted new Laws on EIA and Strategic Impact Assessment (SIA) harmonized with EU directives, including provisions for public access to environmental information and participation in decision-making. Implementation was planned for 2008.

Project Categories

Montenegrin regulations prescribe 79 categories of activities requiring an EIA, including activities in protected areas, ports, marinas, and those that may cause changes to biodiversity. These categories are broadly defined with limited specifications regarding size, impact, or firm type.

Implementation Challenges

Public participation is not mandatory for EIAs in Montenegro but is left to the Ministry's discretion for major projects. The Ministry issues approximately 190 "ecological permits" annually based on EIA studies, though these are limited to biodiversity and air impacts.

Environmental Impact Assessment in Slovenia

Legal Framework

Slovenia has specific laws on impact studies (Official Bulletin no. 66/1996 and no. 12/2000) administered by the Ministry of the Environment. These regulations establish the requirements and procedures for environmental impact assessment.

Required Elements

Slovenian impact studies must describe the original environmental condition, projected development, anticipated impacts and harm, and proposed mitigation measures. The Ministry of the Environment establishes case-by-case criteria, though marine plant formations aren't specifically referenced.

Mandatory Assessments

Impact studies are required for aquaculture structures larger than 0.5 hectares, ports or marinas with over 100 mooring rings, and land reclamation projects.

Studies are conducted by Ministry-empowered bodies but financed by the developing firm.

SLOVENIAN ADRIATIC

SLOVENIAN ADRIATIC COASTLINE

Environmental Impact Assessment in Spain

1

Regulatory Framework

Spanish EIA regulations follow the European Directive, with laws at both state level (Decree 1302/1986, BOE 155; Decree 1131/1988, BOE 239) and regional level, such as Catalonia (Decree 114/1988, DOGC 1000). These establish comprehensive requirements for environmental assessment.

2

Mandatory Assessments

Impact studies are required for projects defined in Appendix I of EEC Directive 85/337 and all interventions likely to damage protected natural areas as defined by Spanish law. The 1986 Decree supplements existing industry and water regulations while standardizing impact study procedures.

3

Enhanced Requirements

Beyond European Directive elements, Spanish impact studies must assess waste and energy quantities resulting from development, the environment's recovery ability, and include an environment-monitoring program. These additional requirements strengthen environmental protection.

Regional EIA Requirements and Seagrass Protection in Spain

Catalonian Requirements

Catalonian regulations require analysis of ecological systems including benthic communities and sediment organic elements on the same scale as general bathymetry. Quantitative studies of representative species populations must be included, with methodology meticulously described to enable future comparison.

Enforcement Mechanisms

Any development requiring an impact study that proceeds without one will be suspended. Omissions, falsifications, or violations of conditions may result in work stoppage. When illegal interventions disturb the environment, responsible parties must repair environmental damage as directed by authorities.

Legislative Updates

The Royal Decree 1302/1986 was modified by National Law 9/2006 on strategic environmental evaluation, adapting European Directive 2001/42/CEE. Projects with potential direct or indirect effects on Natura 2000 sites require environmental impact assessment under environmental authority specification.

Environmental Impact Assessment in Tunisia

Establishment

EIA was established in Tunisia in August 1988 and implemented in 1991 (decree n° 91-362). It aims to assess direct and indirect environmental impacts of planned developments before implementation, enabling informed decisions about project viability.

International Recognition

A joint study by the National Agency For the Protection of the Environment (ANPE) and the World Bank concluded that Tunisia's EIA system represents an important achievement in pollution prevention and environmental protection, with only limited differences from World Bank standards.

Implementation Scale

In 1991, 231 EIAs were conducted in Tunisia. For the following decade, between 1000-1200 EIAs were processed annually, distributed across infrastructure (2%), construction (15%), industrial (45%), tourism (4%), agricultural (10%), and waste management (16%) projects.

Regulatory Evolution

Decree n°1991 (July 11, 2005) improved consideration for sectors concerned by EIA, establishing that impact assessments must be conducted by qualified experts and engineering companies, with approval deadlines varying by project type.

Environmental Impact Assessment in Turkey

1 Legal Foundation

Turkey's regulation of impact studies appears in the Law on the Environment (Law no. 9.8.1983). This general law requires organizations and establishments whose planned activities may create environmental problems to draft reports on expected impacts.

2 Project Categories

Projects requiring full impact studies include thermal and nuclear power stations, refineries, ports handling boats over 1,350 tons, pipelines, storage facilities, and industrial or naval repair units. Offshore rigs and large-scale dredging and filling activities also require comprehensive assessment.

3 Tiered Approach

Smaller developments like ballast tank reservoirs, fishing ports, marinas, or breakwaters require only preliminary studies. If these preliminary assessments indicate significant potential damage, the full impact study procedure becomes mandatory.

4 Sensitive Areas

The full impact study procedure is also required in all "sensitive" areas, including national parks, protected areas, and marine resource production sectors. While seagrass meadows aren't specifically mentioned in EIA regulations, species like *Posidonia oceanica* and *Zostera noltii* are protected under the "Circular on sea and inland waters n°37/1".

Synthesis of Mediterranean EIA Regulations

Regulatory Evolution

Analysis of EIA regulations across Mediterranean countries shows that many have strengthened their existing legislation. Countries like Algeria and Montenegro have established specific legal frameworks for environmental assessment, while others like Libya are developing new regulations.

Implementation Effectiveness

In countries with established impact study laws, these procedures have generally proven effective. The generalization of EIA procedures represents progress, though assessments still focus more on terrestrial than marine environments.

Marine Focus Limitations

Regulatory appendices of impact study procedures list few developments concerning the marine domain, primarily addressing port infrastructure and maritime traffic routes. Some countries also include coastal protection works, marine dredging, aquaculture installations, land reclamation, and sea discharge pipes.

Seagrass Protection in Mediterranean EIA Frameworks

Limited Explicit Mention

The coastal environment is rarely specifically mentioned in regulatory texts, and plant formations developing there even less so. However, some regional initiatives have emerged, such as Liguria region in Italy establishing regulatory procedures specifically addressing impacts on *Posidonia* meadows.

Legal Protection

The absence of specific mentions of seagrass meadows in impact study procedures is often compensated by legal protection status for marine phanerogam species. This protection can be direct (through national or regional laws) or indirect (through international conventions or directives).

Regional Cooperation

The *Posidonia* Interreg IIIB framework has facilitated cooperation between regions like Liguria (Italy), PACA (France), and Catalonia (Spain), resulting in a regional regulatory guidebook for managing impacts on *Posidonia oceanica* meadows. This represents an important step toward harmonized protection approaches.

Strengths of Mediterranean EIA Systems

Balanced Decision-Making

Impact studies constitute a means of improving and rationalizing development decisions. They enable environmental considerations to be weighed alongside local community interests and economic profit expectations, creating more sustainable outcomes.

Default Requirement

In some Mediterranean countries, impact study procedures are the rule for developments, with exemptions being the exception. This approach, which should be extended throughout the region, ensures comprehensive environmental consideration for most projects.

Monitoring Systems

Several countries have established regulatory monitoring and checking systems during development phases and afterward. This ongoing analysis verifies the adequacy of recommended techniques and their effectiveness in reducing environmental impacts.

Weaknesses of Mediterranean EIA Systems

When project managers finance their own impact studies, there's a risk that assessments may be superficial or entrusted to inexperienced personnel to reduce costs. This risk increases when countries don't accredit or verify the qualifications of those conducting studies, potentially leading to varied quality and competence levels, especially when procedural guidelines aren't detailed.

Financial relationships between developers and assessors may lead to systematic underestimation of potential environmental damage. Additionally, the absence of standardized protocols makes medium-term monitoring difficult and prevents meaningful comparison of results at national levels. Finally, even when EIA is defined in national legislation, delayed implementation regulations can render these laws ineffective in practice.

Future Directions for Seagrass Protection in Mediterranean EIAs

7

Mediterranean Countries

EU member states with standardized EIA requirements for seagrass protection

79

Project Categories

Activities requiring EIA in Montenegro, showing the broad scope of assessment frameworks

1991

Implementation Year

When Tunisia began applying its EIA system, demonstrating the evolution of environmental protection

1000+

Annual Assessments

EIAs conducted yearly in Tunisia alone, highlighting the scale of environmental review processes

Despite the challenges, Mediterranean countries have made significant progress in developing environmental impact assessment frameworks. The protection of seagrass ecosystems, particularly *Posidonia oceanica* meadows, has increasingly been incorporated into these frameworks, either directly through specific regulations or indirectly through species protection laws.

Moving forward, standardization of assessment methodologies, stronger accreditation systems for environmental assessors, and greater emphasis on marine ecosystems in EIA requirements will be essential. Regional cooperation initiatives like the Posidonia Interreg IIB framework demonstrate the potential for harmonized approaches to seagrass protection across the Mediterranean basin.


Module 4: Seagrass Mapping and Monitoring

Mapping and monitoring seagrass extent, cover and species composition is vital to understanding these complex and dynamic ecosystems. This process highlights areas of resilience and sensitivity, and helps predict responses to climate change-induced pressures.

Seagrass mapping and monitoring extends beyond direct measurements to include their benefits, processes and pressures relating to food regulation, fishery production, the global carbon cycle, biodiversity and climate change, among other aspects.

 Şevki Danacıoğlu

Challenges in Global Seagrass Mapping

1

Diverse Habitats

Seagrasses are found across a broad depth range, from the intertidal zone to 80 metres deep, and grow in environments ranging from very clear to very turbid waters.

2

Variable Density

Seagrass beds vary in density, from single patches to square kilometres of homogeneous meadows, making consistent monitoring difficult.

3

Species Diversity

Species composition ranges from single species to mixed grounds of more than 10 species, requiring different monitoring approaches.

In order to achieve innovative and timely seagrass mapping and monitoring, a globally coordinated matrix approach is necessary to address these challenges.

A Matrix Approach to Seagrass Monitoring

Top-Down Methods

Remote sensing instruments including satellites, airplanes, drones, and sonars provide broad spatial coverage but may miss detailed ecosystem conditions.

Bottom-Up Methods

In situ sampling provides detailed information but is resource intensive and can vary in timing, consistency and methodologies.

Combined Approach

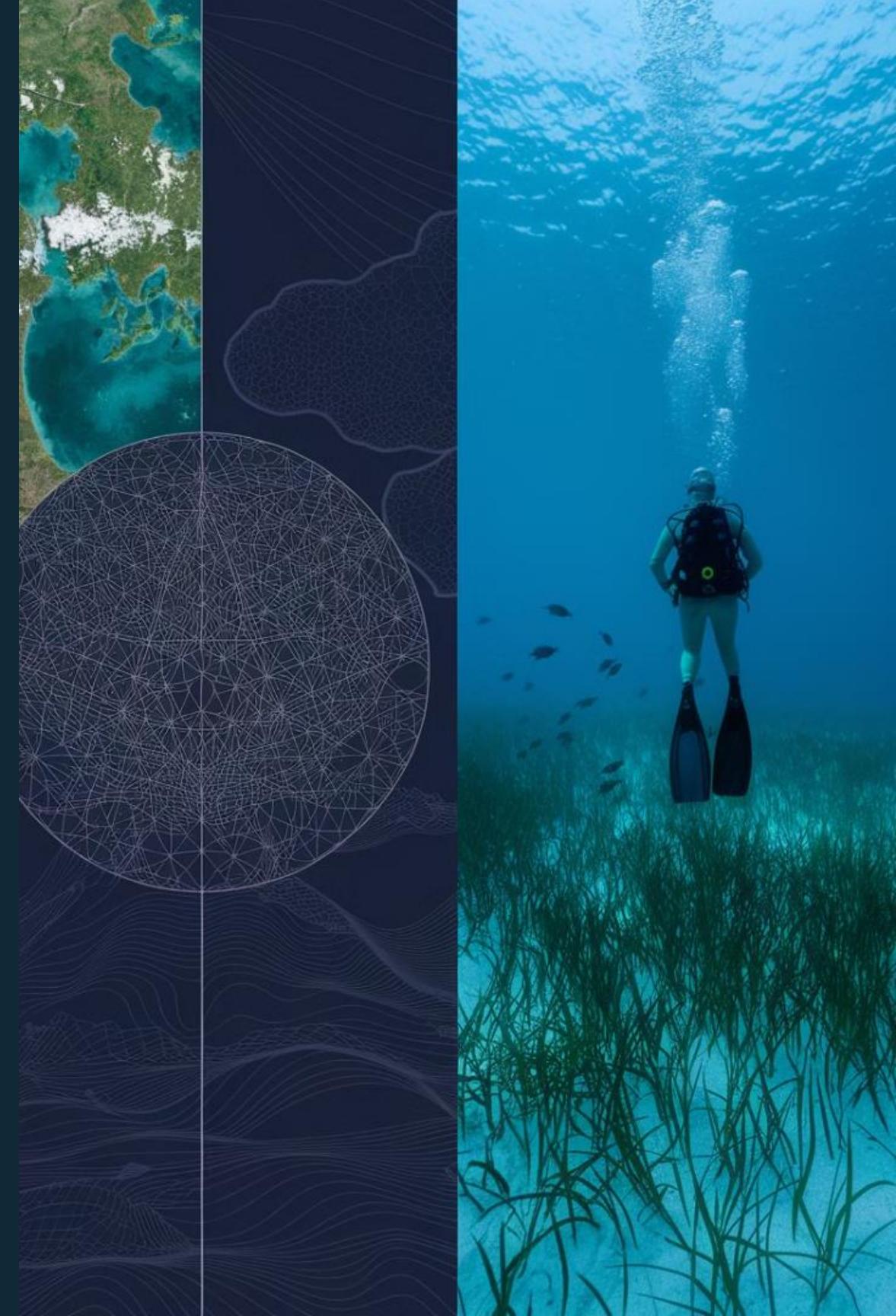
When combined, remotely sensed and in situ methods yield critical information on health and trends of seagrass ecosystems for researchers and decision makers.

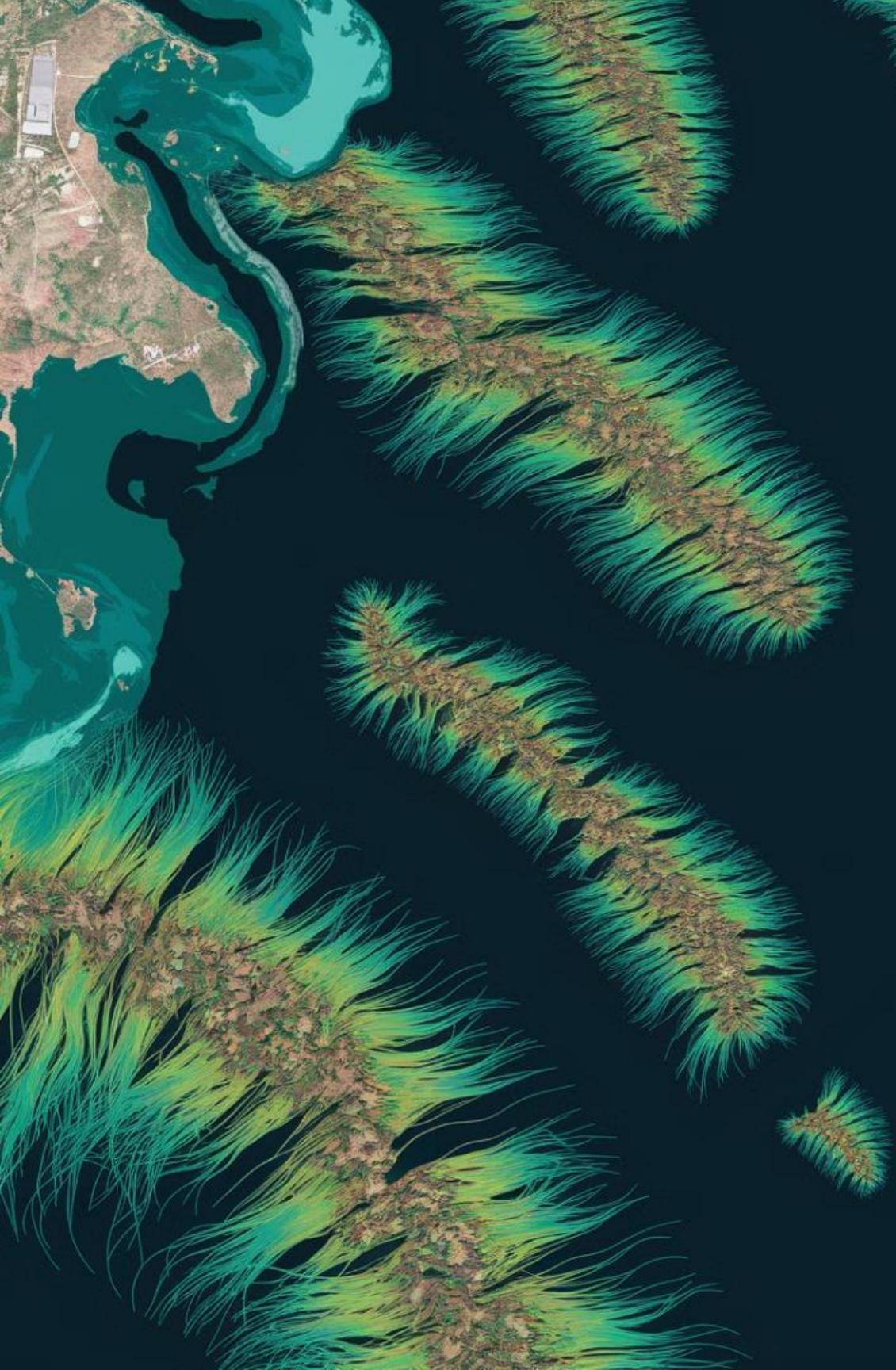
The three main components of the matrix to perform mapping and monitoring of seagrasses at the global scale are: the techniques, the technology and the data.

Mapping and Monitoring Techniques

Optical-based

Using remote sensing instruments such as satellites and drones to capture imagery of seagrass beds from above.


Acoustic-based


Using remote sensing instruments such as sidescan sonars to map underwater seagrass distribution.

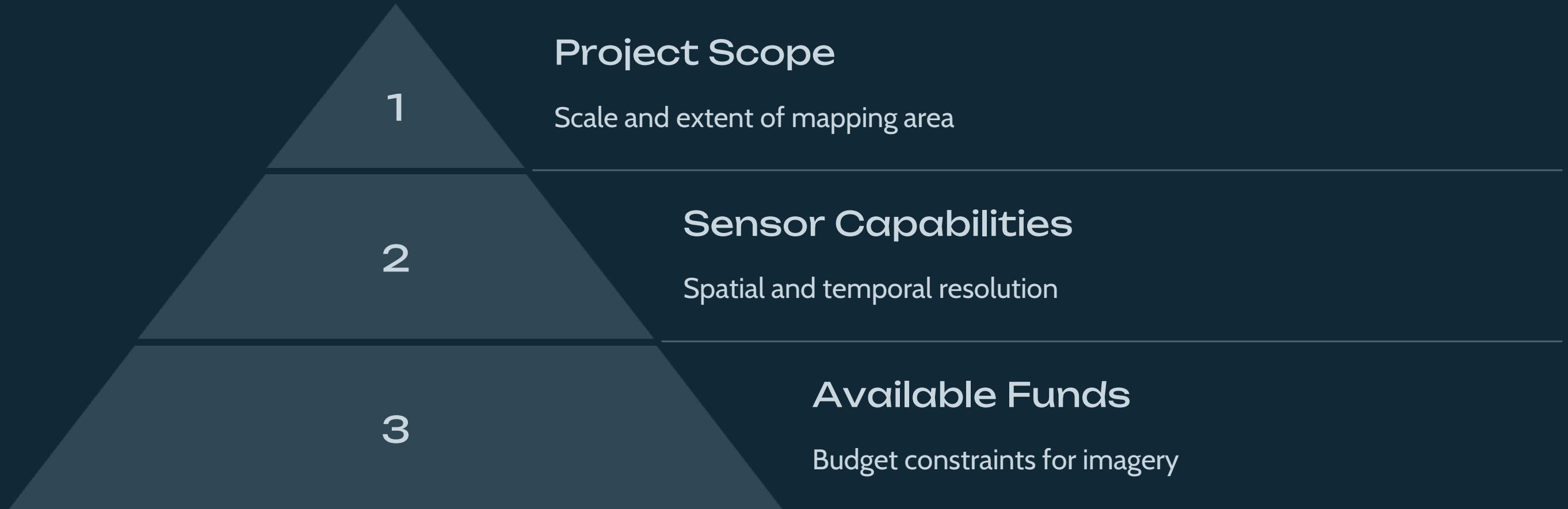
Field-based

Conducted through diving, snorkelling and ecological monitoring to gather detailed data on seagrass health.

Optical Techniques: Satellites and Drones

Satellite Capabilities

Satellite-based remote sensing can identify and map seagrass between spatial resolutions of 0.30 and 30 m, temporal resolutions between 1 and 17 days, and spectral bands between 400 and 700 nm – the visible spectrum.


Depth Limitations

Satellites can see seagrasses with satisfactory detail and frequency to maximum water depths of 40 m in many cases, depending on water clarity.

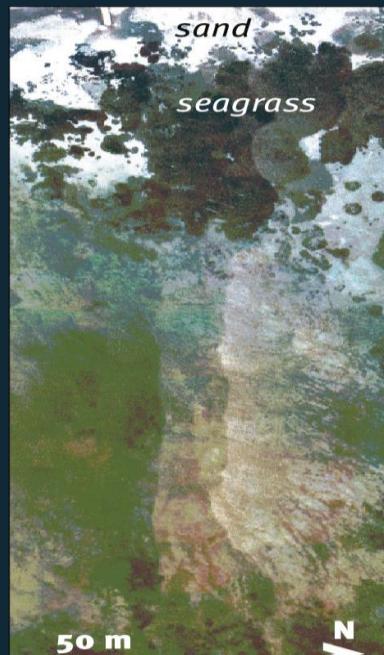
Advantages and Disadvantages

While satellites provide broad coverage, their effectiveness is limited by factors such as water clarity, cloud cover, and resolution constraints.

Selecting the Right Satellite Sensor

The final decision on selecting the appropriate satellite sensor highly depends on balancing these three factors. Recent developments in lightweight drones, also known as Unoccupied Aerial Systems (UAS), have added valuable new tools to the Earth observation and remote sensing toolkit.

Advantages and disadvantages of satellite imagery in mapping seagrass meadows.

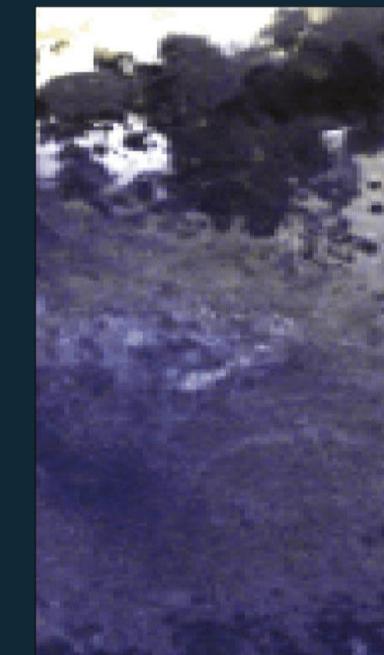

Advantages	Disadvantages/potential errors
<ul style="list-style-type: none">• Enables differentiation between objects whose colour would appear identical to a photo-interpreter• High spatial resolution• Digital from acquisition• Large coverage, easy to georectify	<ul style="list-style-type: none">• Photographic distortion• Photo-interpretation• The spectral output of seagrass beds may vary over very short distances due to:<ul style="list-style-type: none">- growth of epiphytes- "health" of the grasses- water depth- optical properties of overlying water• Low radiometric resolution• Clouds are a big problem

Selecting the Right Satellite Sensor

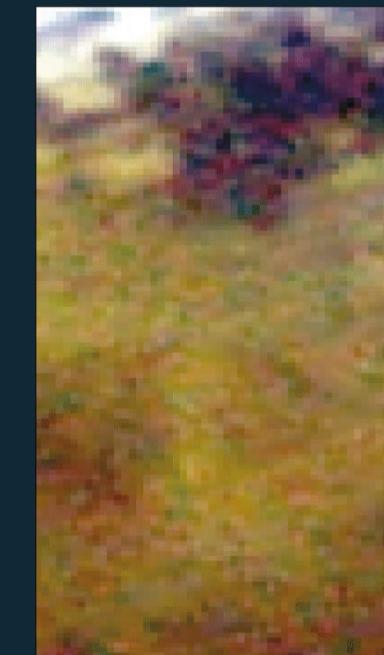
Seagrasses from above - drones and satellites

Example images from Lesbos, Greece. 39°09'30.6"N 26°32'01.8"E

Drone


- + Very high spatial resolution, Low cost of acquisition, High flexibility of deployment
- Small ground area coverage, Limited optical bands, Required laborious image pre-processing

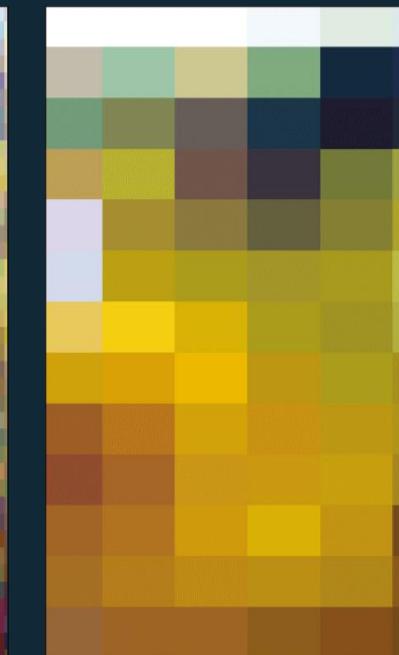
WVII PAN


- + Very high spatial resolution, High spectral information, Direct and flexible sensor tasking
- Commercial imagery, Very high cost of imagery

WVII MUL

- + Very high spatial resolution, High spectral information, Direct and flexible sensor tasking
- Commercial imagery, Very high cost of imagery

PlanetScope


- + High spatial resolution, High temporal resolution, Free under a scientific license
- Radiometric differences between, Low spectral information

Sentinel-2

- + High spatio-temporal resolution, Open, free and public datasets, Archive between 2015-2029
- Multiple spatial bands, Spectral technological-related artifacts over seagrass areas

Landsat-8

- + Large area coverage, Free datasets, Historical archive back to 1972
- Low spatial resolution, Low temporal resolution

Sources: Topouzelis, K. University of Aegean (2018); DigitalGlobe (2019); PlanetScope (2019); Copernicus Sentinel data (2018); Landsat-8 (2018) U.S. Geological Survey

	Landsat Thematic Mapper*	SPOT XS *	CASI (Compact Airborne Spectro-graphic Imager)	Aerial photography
Accuracy of the map (%)	<60	<50	<90	<70
Coverage per scene (km)	185 x 185	60 x 60	variable	variable
Cost (€ km ⁻² scene ⁻¹)	0.12	0.71	8.11	16.07

Advantages and disadvantages of mapping seagrasses with aerial photography.

Advantages	Disadvantages
<ul style="list-style-type: none">• High spatial resolution• Spatial resolution (as determined by the scale) can be selected based on project objectives• Flexible acquisition – imagery can be planned captured at the most optimal time of day and under the best environmental conditions• Low technology information extraction – seagrass maps can be made from aerial prints or diapositives with little technical hard- or software resources, but in most cases aerial photos should be digitised and rectified before mapping.• Stereometry can greatly enhance mapping.	<ul style="list-style-type: none">• Cost – The fine spatial resolution provided by the photographs comes at the cost of obtaining a large number of frames• It is produced in an analogue format and must be scanned if any computer enhancement, image processing or rectifying is anticipated• Distortion – The nature of the camera lens and position, roll, yawl and tilt of the plane introduces some distortion into the imagery. A problem if not corrected by rectifying.• Lack of light can make interpretation difficult in deep and turbid waters• Highly variable sun-glint reflection from all directions in image.• Clouds.

Drone Applications in Seagrass Monitoring

<10cm

Resolution

Drones provide subdecimetre spatial resolution, capturing fine details of seagrass beds.

\$

Cost

Relatively low cost compared to other remote sensing methods.

100%

Flexibility

High flexibility in deployment capabilities and customization for specific monitoring needs.

Drones have been used in a series of intertidal seagrass monitoring studies demonstrating their effectiveness for high-resolution mapping. The cost and accuracy considerations vary significantly between satellite and airborne sensors, with drones offering a middle ground solution.

Synergy Between Drones and Satellites

Drone Collection

Drones collect high-quality, high-resolution reference data at lower altitudes (usually no higher than 300 m).

Validation

This data validates the lower-resolution, satellite-derived seagrass mapping products.

Cost Reduction

This approach reduces costs associated with collecting field validation data *in situ* (by means of snorkelling and/or diving).

Increased Feasibility

The combined approach increases the feasibility of seagrass mapping projects.

The ability to fly drones on the same route repeatedly and collect data as necessary has made them a very useful tool in the routine monitoring of seagrass ecosystems, despite requiring special permissions and licenses.

Acoustic Mapping Techniques

Side-scan Sonars

Used since the 1970s in the Mediterranean Sea to map seagrass beds, though it is difficult to measure densities and canopy heights.

Single Beam Echosounders

Useful for mapping the lower depth limit of seagrass distribution, though they do not provide full coverage of the sea floor.

Multibeam Echosounders

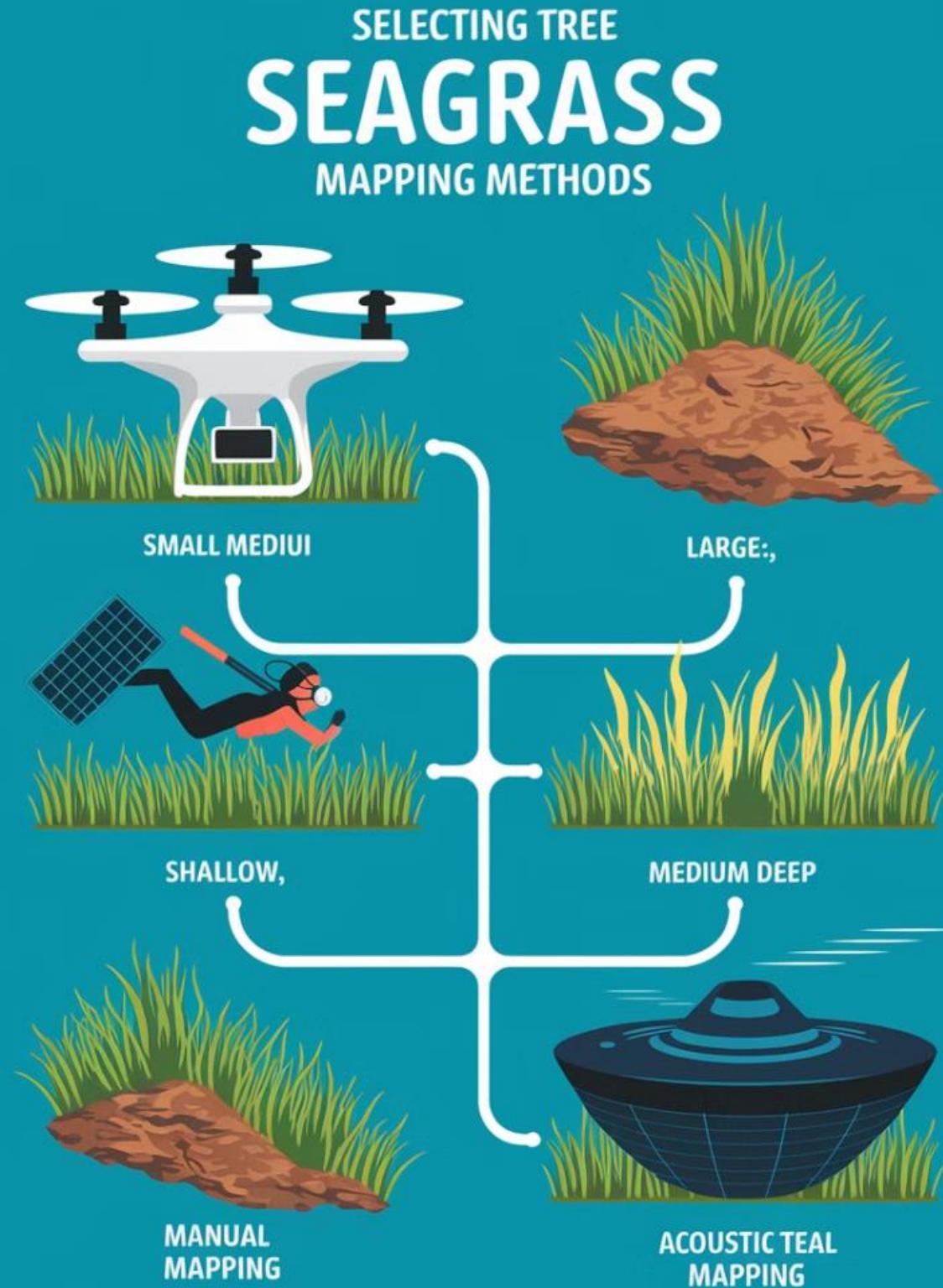
One of the most effective acoustic tools, creating three-dimensional images of seagrass meadows with detailed structure.

Acoustic sensors are commonly used to map seafloor physical and biological properties. Using ultrasound techniques, it is possible to map seagrass meadows using an acoustic apparatus, usually towed from or installed on a boat. The size of the surveyed area generally falls between that of in situ methods and satellite imagery.

Field-based Monitoring Approaches

Percentage Cover Assessment

The best established and most commonly used variable for seagrass monitoring, referred to as 'the horizontally projected foliage covers of the canopy'.


Additional Measurements

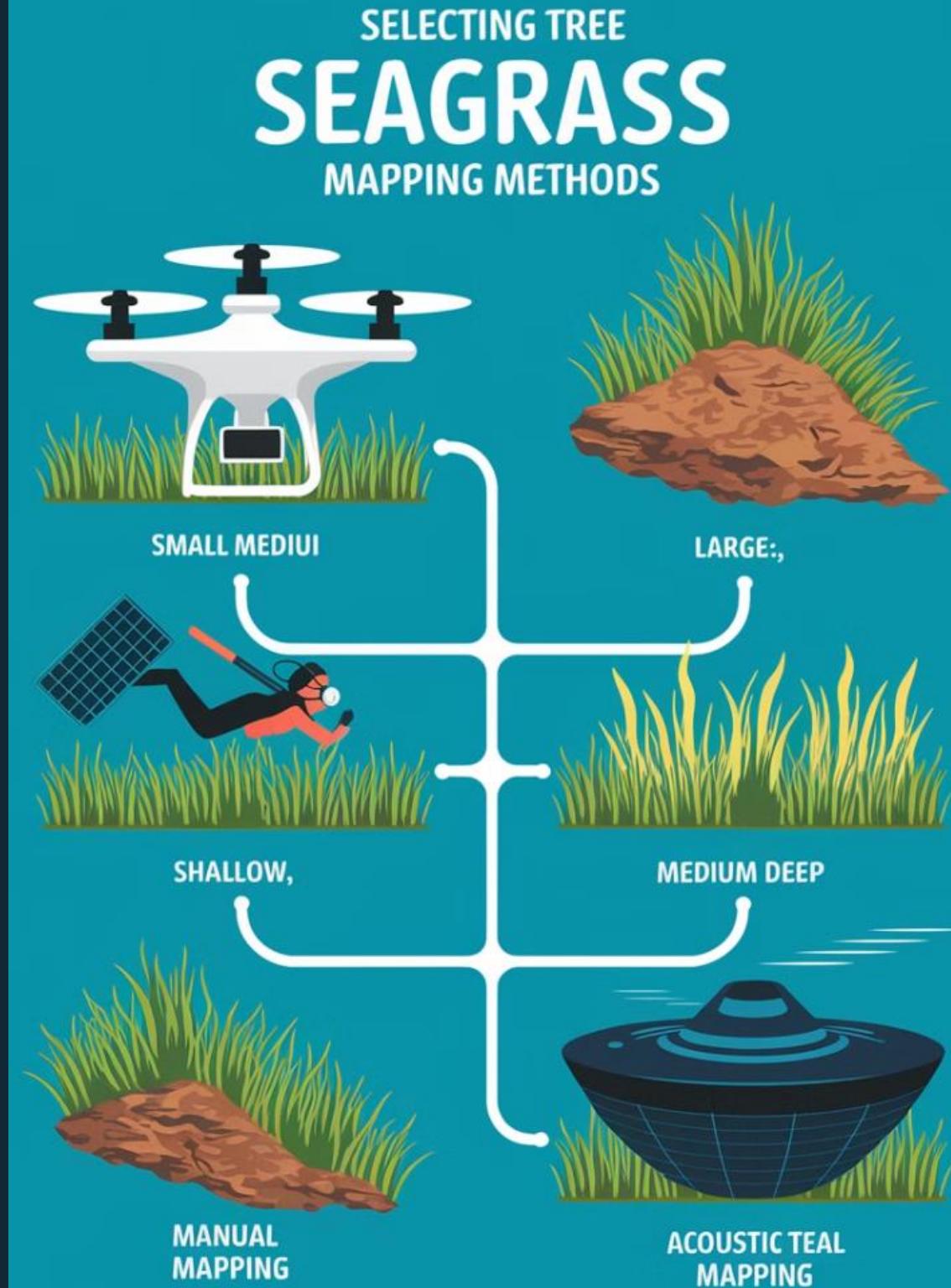
Collection of shoot density, canopy height, biomass and species composition data at a fine scale.

Quality Control

Using common reference cards and quality assurance/quality control (QA/QC) procedures to improve accuracy.

Field-based monitoring can provide detailed information on the health status (ecological status) of seagrass meadows as a number of variables are collected at a fine scale. While estimating cover can be subjective, proper training and standardized methods can greatly improve the method's accuracy.

Coordinated Monitoring Networks


Networks provide an excellent and cost-effective method of obtaining standardized and comparable data on seagrass change and related drivers over several different locations worldwide through time. A recent global assessment identified 19 active long-term seagrass monitoring programmes, the largest being Seagrass-Watch and SeagrassNet.

Both networks aim to provide up-to-date online data submission systems, as well as resources to support monitoring, such as manuals or protocols, field guides and data sheets, news, details of seagrass sites and participants.

Choosing the Right Mapping Method

Method	Area Size	Depth Range	Advantages
In-situ (diving)	Small (<1km ²)	0-30m	High detail, species ID
Video camera	Small-Medium	0-50m	Good coverage, less labor
Aerial photos	Medium-Large	0-15m	Wide coverage, archival
Satellite imagery	Very Large	0-10m	Global coverage, repeatable

The depth intervals are only indicative as the ability of remote sensing methods to distinguish seagrasses depends on water clarity rather than absolute water depth. Digital aerial photos have higher sensitivity than ordinary film and are recommended when water clarity is low.

Technological Advances in Seagrass Mapping

1

Cloud Computing

Enables processing of massive datasets

2

Artificial Intelligence

Automates analysis and classification

3

Machine Learning

Improves accuracy and detection

In the last decade, technological advances in computation have enabled two cornerstones of today's mapping and monitoring via satellite and drone imagery: cloud computing platforms and artificial intelligence (AI), which includes machine learning and deep learning.

This technology sets the stage for highly scalable, repeatable and accurate techniques that can facilitate seagrass mapping and monitoring at unprecedented scales and resolutions.

Cloud Computing Platforms

Google Earth Engine

Cloud-based platform offering storage, processing, analysis and visualization of Earth observation data, used successfully for mapping Posidonia oceanica across Greek coastlines.

Amazon Web Services

Provides cloud environment for storage and processing of large-scale Earth observation datasets.

European Commission's Copernicus

Data and Information Access Services offering tools for analyzing satellite imagery for environmental monitoring.

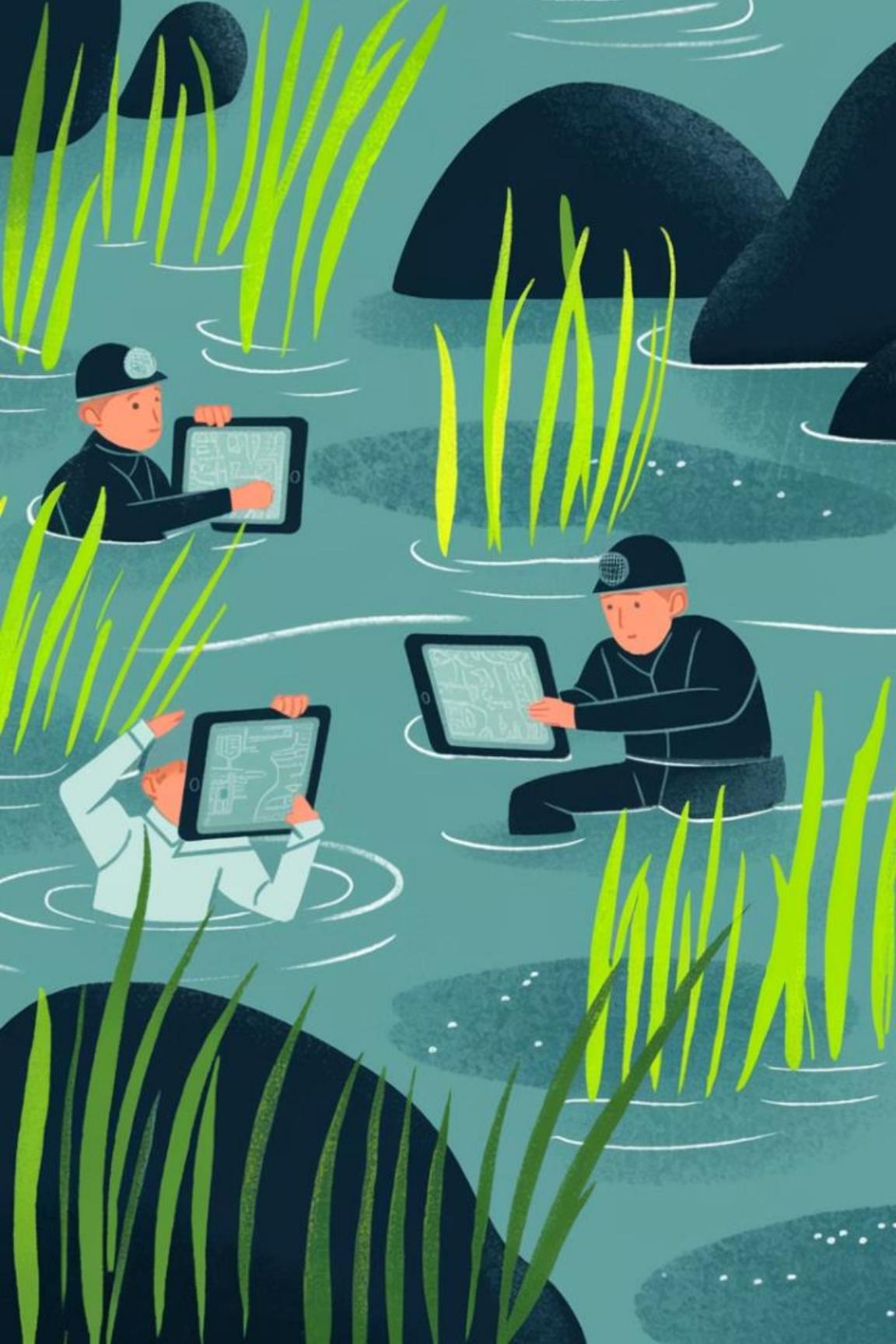
The last five years have seen the establishment and growth of cloud computing platforms, which represent an unprecedented 'big data' approach to science and management. These platforms emphasize data-intensive analyses, time- and cost-efficient data access, huge computational resources and high-end visualization.

Artificial Intelligence in Seagrass Monitoring

- 1
- 2
- 3

Machine Learning

Programs that use input data to build and employ predictive models for seagrass identification and classification.


Deep Learning

A broader member of the machine learning family based on artificial neural networks that mimic brain structure and function.

Automated Analysis

These algorithms lead to breakthrough innovations in data-driven seagrass monitoring, especially within cloud environments.

AI technologies could significantly advance seagrass monitoring through improved classification accuracy, increased automation of data processing and analysis, and development of automated change detection of seagrasses over time.

Reference Data Requirements

1

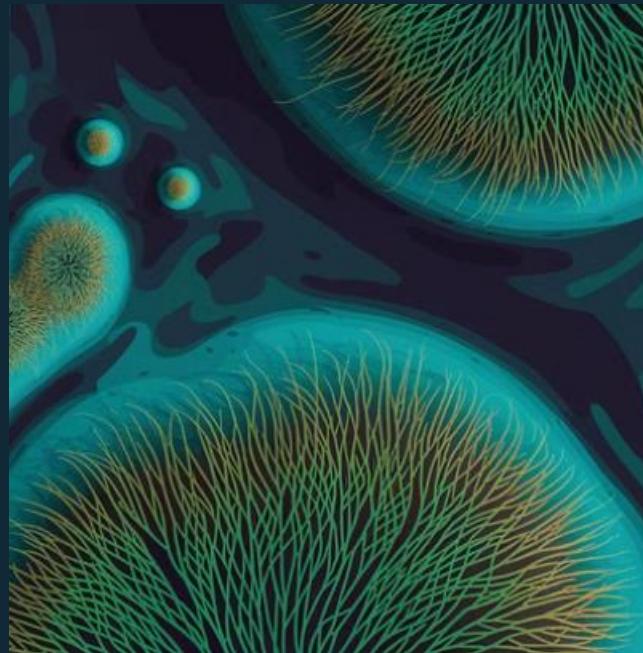
Training Data Collection

High-quality training data for the calibration of algorithms can be collected by field campaigns with GPS or via customized mobile applications.

2

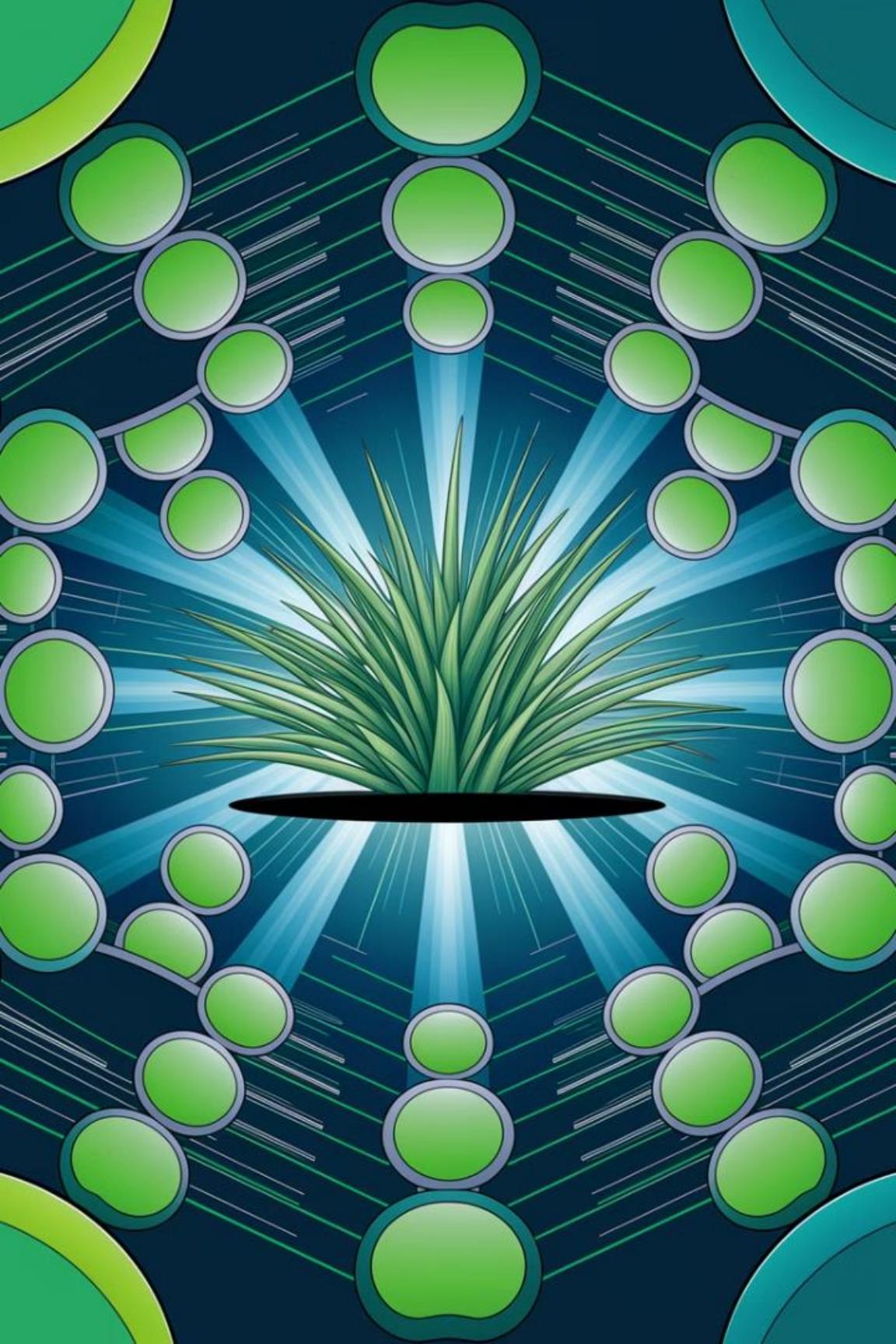
Algorithm Development

Machine learning methods require extensive training data to accurately identify seagrass in Earth observation imagery.


3

Validation

Data validation or ground-truthing evaluates the accuracy and quality of the classified image, ensuring reliable results.


Analysis of Earth observation data using machine learning methods requires high-quality training data for the calibration of algorithms. The validation data should be representative of the population, with all the classes sampled (same number of classes as used for classification and training data).

Sources of Validation Data

Validation data sets can be obtained from various sources such as existing maps and inventories, images from high-resolution satellites or drones, and in situ methods (diving, snorkelling or on foot in intertidal seagrass areas).

Satellite and drone-based, georeferenced and high-resolution images, when available, can be used as basemaps by experienced users who design training data sets in the form of spatial points or polygons.

The Importance of Metadata

1 Documentation Standards

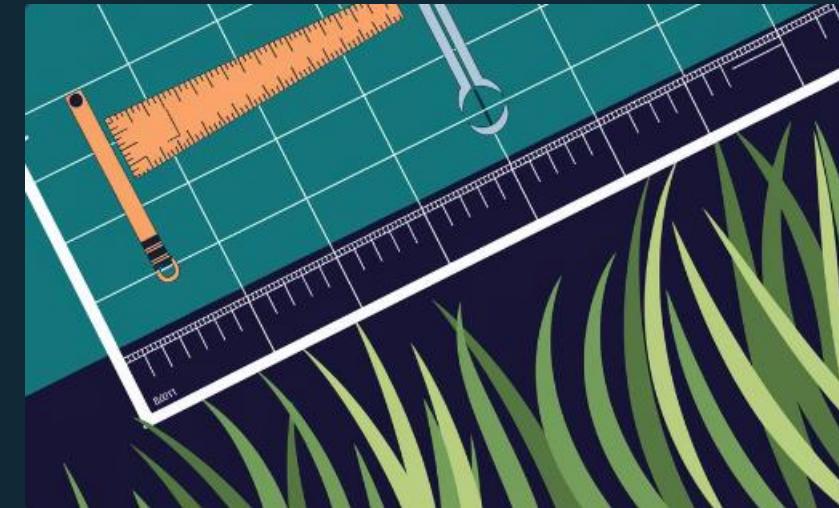
Global and regional standards exist, such as ISO 19115 and the INSPIRE Directive, to ensure consistent documentation of data.

2 Data Platforms

Platforms like the Dynamic Ecological Information Management System (DEIMS-SDR) help document available *in situ* data sets.

3 Biological Standards

Metadata standards commonly used for biological and ecological data include the Ecological Metadata Language (EML) and Darwin Core standards.


Rigorous metadata are an essential but often overlooked requirement for the future use of the collected data, following the 'collect once, use many times' principle. Metadata provide details on the source, location, time frame, version and methodologies used for each data record, enabling meaningful comparison between records.

Seagrass-Watch Global Monitoring Program

Community Participation

A global participatory scientific monitoring and science-based education programme established in 1998, operating across 408 sites in 21 countries.

Standardized Methods

Seagrass condition is assessed from 33 quadrats (50 cm x 50 cm) within permanent and replicated monitoring sites (0.25–5.5 ha), established in representative meadows.

Quality Control

To ensure data accuracy, assessments are predominantly conducted by experienced scientists and environmental practitioners, in partnership with the wider community.


Seagrass-Watch Measurement Parameters

Primary Measurements

Seagrass percentage cover and species composition, canopy height, epiphyte cover, macroalgae cover and sediment grain size.

Reporting

Status reports on seagrass condition are provided on the programme website, with results used at local and regional levels to support conservation objectives.

Additional Parameters

Depending on local capacity: seagrass flowers/fruits, seed densities, meadow seascapes (fragmentation), herbivory, leaf tissue nutrient concentrations, temperature and light.

Assessment Frequency

The frequency depends on local capacity and can be quarterly (every three months), biannual, annual or ad hoc.

SeagrassNet Global Monitoring Network

Global Reach

Established in 2001, SeagrassNet investigates and documents the status of seagrass meadows by monitoring 126 sites in 33 countries.

Standardized Protocol

Each monitored area has three permanent 50-metre transects with 12 replicate sampled positions, with sampling predominantly conducted by local government and environmental practitioners.

Comprehensive Parameters

Biological parameters include species, cover, canopy height, biomass and flowers/fruits, and meadow expansion/retraction, measured along with temperature, light, salinity and sediment characteristics.

Coordinating Global Seagrass Monitoring Efforts

GOOS Coordination

The Global Ocean Observing System (GOOS) works to coordinate global seagrass monitoring efforts within the context of essential ocean variables (EOVs).

MBON Integration

The Marine Biodiversity Observation Network (MBON) helps integrate seagrass monitoring with other marine biodiversity observations.

National Standards

The SeagrassNet protocol (adapted) has been taken as the national standard in Brazil, demonstrating its effectiveness and adaptability.

SeagrassNet results reveal seagrass change over timescales relevant to management, while also informing scientifically supported statements about the status of seagrass habitat and the magnitude of the need for management action.

The goal of the biological essential ocean variables (EOV) approach, including the seagrass EOV, is to develop communities of practitioners around the globe to measure key biological variables in a globally coordinated and inter-comparable way.

Best Practices in Seagrass Monitoring

Methodology Standards

Developing standardized monitoring approaches that can be applied consistently across different regions and ecosystems.

Metadata Protocols

Establishing clear guidelines for documenting data collection methods, timing, and conditions to ensure comparability.

Data Management

Creating systems for storing, sharing, and analyzing seagrass monitoring data across different platforms and organizations.

In addition to developing partnerships and a community of practitioners, this community is working to develop best practices for monitoring, metadata, and data management. For example, the Ocean Best Practices repository (www.oceanbestpractices.net) has been developed to collate and archive the best practices in ocean research, observation, and data and information management.

Existing Seagrass Monitoring Programs

Numerous established monitoring programs exist worldwide, including Posidonia oceanica Monitoring Networks in the Balearic Islands, Cataluña, and Comunidad Valenciana (Spain), GIS-Posidonie in France, the Danish National Monitoring and Assessment programme, the Estonian Environmental Monitoring Programme, and the Cooperative Monitoring in the Baltic Marine Environment (COMBINE).

Global networks like Seagrass Watch and SeagrassNet provide coordination and standardization across these regional efforts, helping to create a more comprehensive global understanding of seagrass ecosystems.

Open Seagrass Distribution Data

1

Global Distribution Dataset

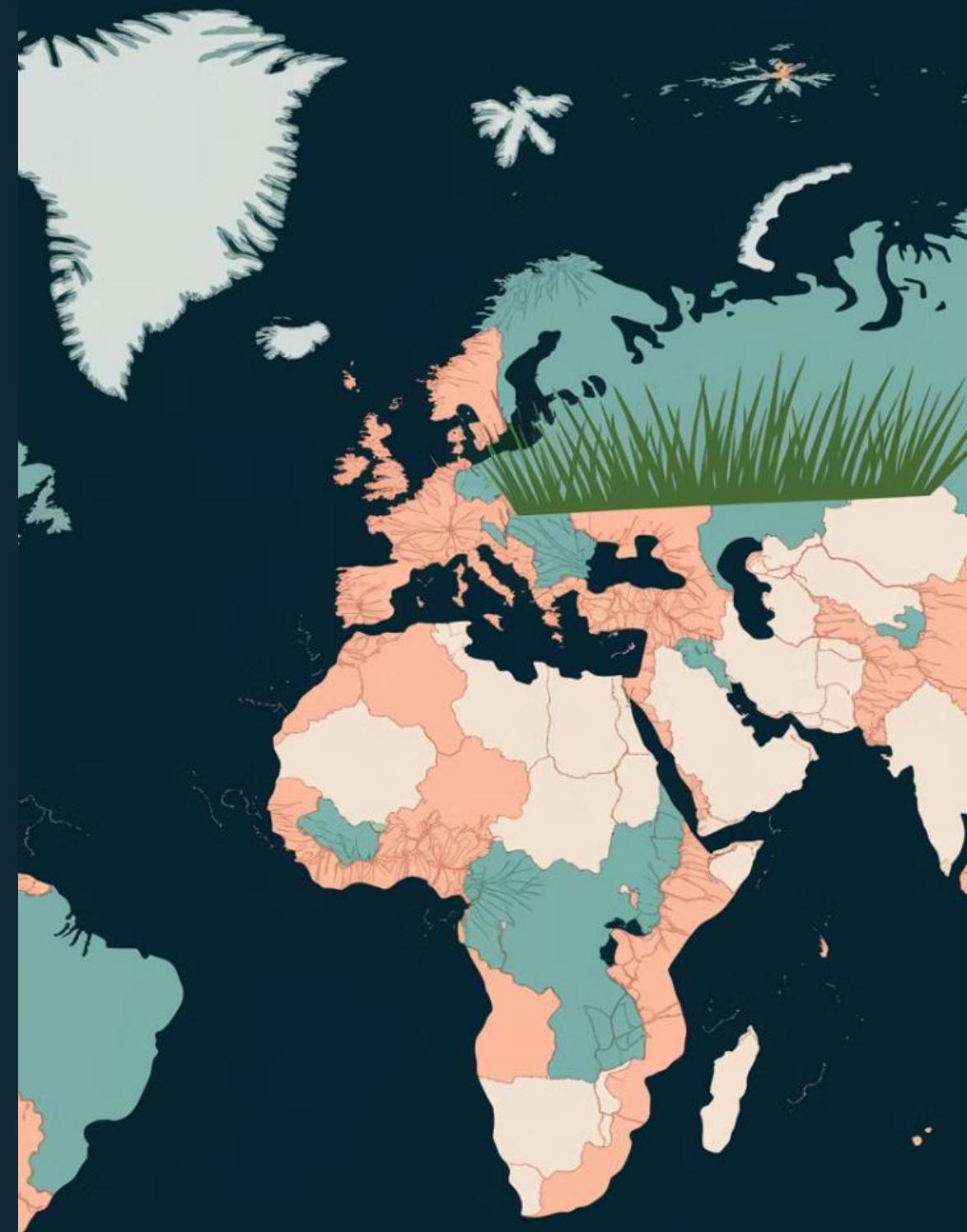
Efforts to collate seagrass distribution data have led to the development of the Global Distribution of Seagrasses data set.

2

Regional Inventories

Regional or national inventories held by intergovernmental, governmental and non-governmental organizations provide detailed local data.

3


EMODnet

The European Marine Observation and Data Network's broad-scale map of seabed habitats includes recently launched seagrass, macroalgae and live coral EOV data sets.

4

GBIF and OBIS

Individual point records are available through the Global Biodiversity Information Facility and Ocean Biogeographic Information System.

Challenges and Future Directions

1 Knowledge Gaps

While efforts are continuing to strengthen understanding of seagrass locations, there are still significant gaps in knowledge, particularly in remote or understudied regions.

2 Time Series Scarcity

Comprehensive, large-scale time series on the state of seagrasses remain scarce, limiting our understanding of long-term trends.

3 Technology Limitations

Emerging technologies face challenges in capturing the variety of seagrasses that exist globally and can be expensive to use on a regular basis.

4 Standardization Efforts

IOC-UNESCO GOOS is developing essential ocean variables for seagrass to help standardize data collection worldwide.

The Future of Seagrass Monitoring

Integrated Approaches

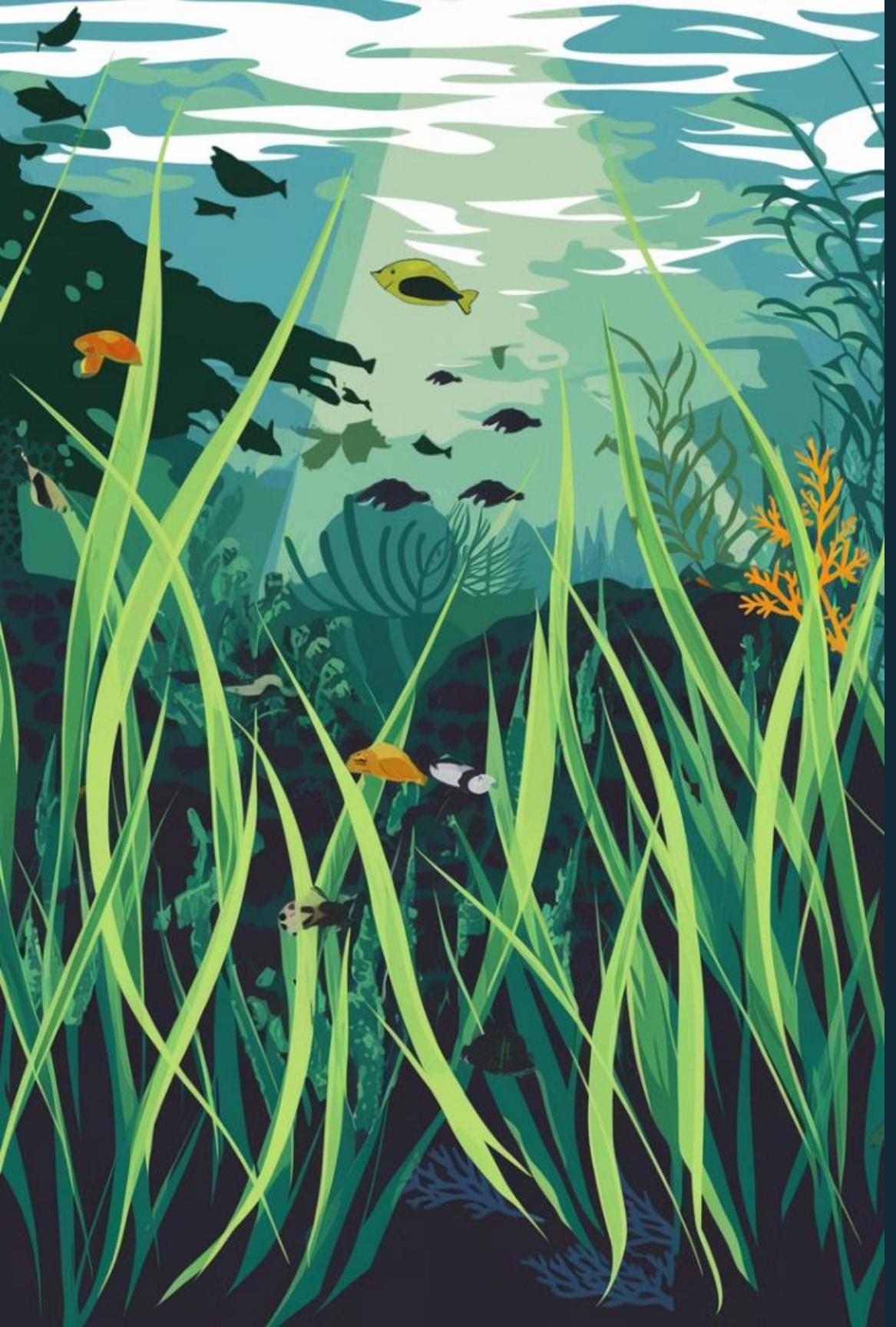
Combining multiple techniques

Advanced Technologies

AI and cloud computing

Open Data Sharing

Accessible repositories


Global Coordination

Standardized protocols

The future of seagrass monitoring lies in the integration of multiple approaches, from satellite remote sensing to in-situ measurements, all supported by advanced technologies like artificial intelligence and cloud computing.

Global coordination through standardized protocols and open data sharing will be essential to build a comprehensive understanding of seagrass ecosystems worldwide, supporting conservation efforts and policy decisions in the face of climate change and other anthropogenic pressures.

Module 5: Policy and Management Options for Seagrass Ecosystems

Protecting and restoring seagrass ecosystems provides countries with a powerful opportunity to achieve multiple national targets related to the **Sustainable Development Goals** (SDGs), while simultaneously strengthening local economies and meeting global commitments.

As vital marine habitats, seagrass meadows deliver essential goods and services that underpin the well-being of coastal communities worldwide. These ecosystems create direct links to food security, support local economies, and enhance climate change resilience - making them critical components of sustainable coastal management.

by Şevki Danacioğlu

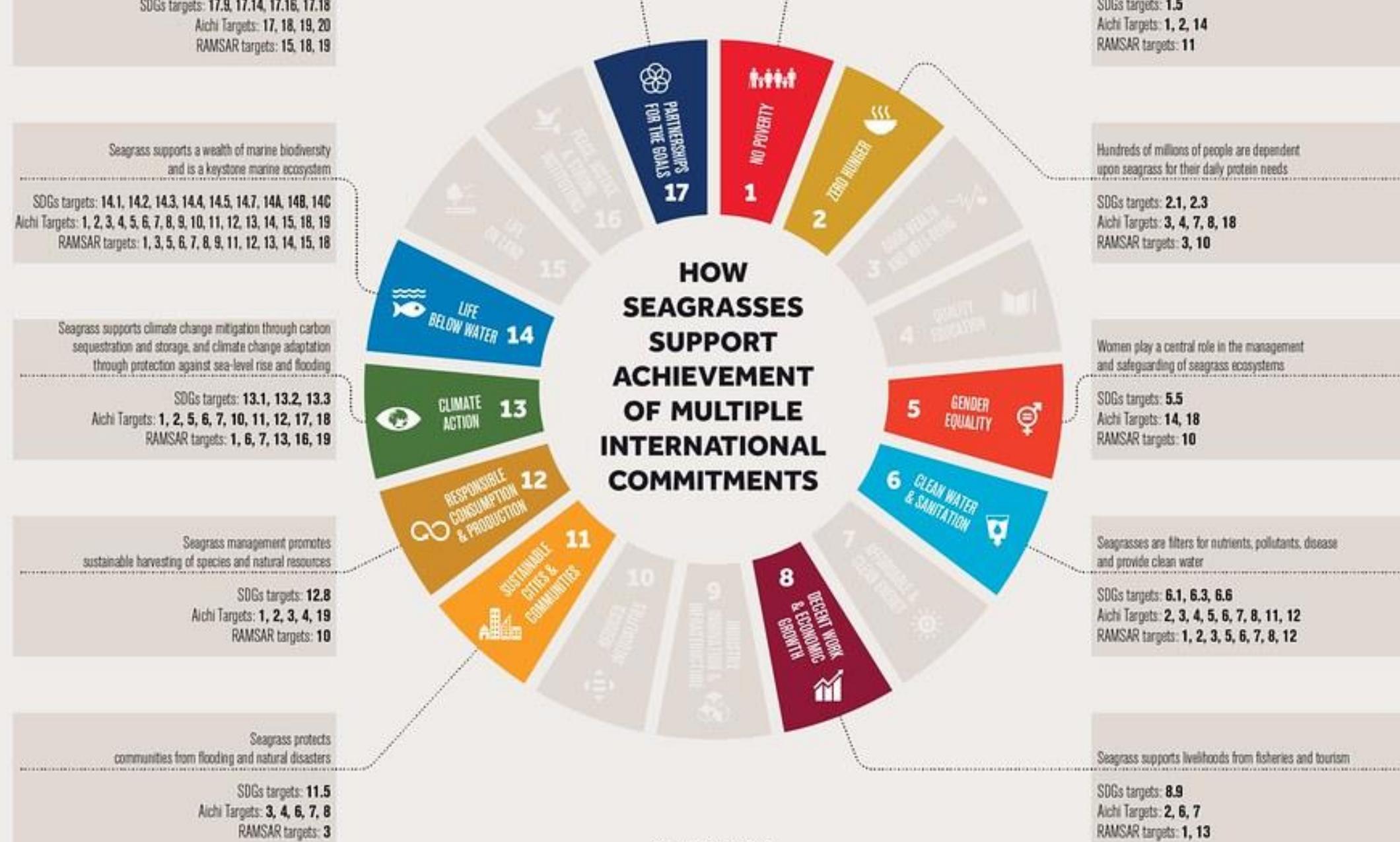
Seagrasses Support Multiple Sustainable Development Goals

Seagrass ecosystems directly or indirectly support progress toward most of the United Nations SDGs, proving essential for targets related to climate change and food security. Conservation and restoration of these vital habitats can help countries achieve 26 targets and indicators associated with 10 SDGs, including those addressing poverty, hunger, gender equality, clean water, economic growth, and climate action.

These marine ecosystems contribute to climate change mitigation through carbon sequestration and storage, while buffering impacts of extreme weather events. They enhance economic and food security by providing fish nursery grounds that improve fisheries yields and generating tourism income for local communities.

1 Climate Benefits

Seagrasses sequester carbon and buffer coastal communities against extreme weather, enhancing climate resilience.


2 Economic Security

As fish nursery grounds, seagrasses improve fisheries yields and support tourism, generating vital income for local communities.

3 Gender Sensitivity

Effective management practices recognize the differentiated knowledge, roles and needs of men and women, facilitating gender equality in governance.

HOW SEAGRASSES SUPPORT ACHIEVEMENT OF MULTIPLE INTERNATIONAL COMMITMENTS

Seagrasses and Global Biodiversity Frameworks

Many of the CBD's Strategic Plan for Biodiversity 2011-2020 Aichi Biodiversity Targets directly relate to seagrass ecosystems. Several goals specifically map to benefits received from seagrasses, including those addressing habitat loss (Target 5), fish stocks (Target 6), pollution (Target 8), marine protected areas (Target 11), ecosystem services (Target 14), and climate security (Target 15).

The 2015-2020 Gender Plan of Action provides a significant mandate for integrating gender considerations across policy and organizational spheres. Seagrasses and other coastal wetlands are documented in countries' national biodiversity strategies and action plans (NBSAPs), supporting the 2050 Vision for Biodiversity – "Living in harmony with nature."

Habitat Protection

Seagrasses directly support Aichi Target 5 (habitat loss), Target 6 (fish stocks), and Target 11 (marine protected areas).

Ecosystem Services

These marine habitats deliver on Target 14 (ecosystem services for livelihoods) and Target 15 (climate security).

Post-2020 Opportunity

The post-2020 biodiversity framework offers an opportunity to develop SMART targets for effective seagrass management.

Seagrasses in Climate Change Agreements

Seagrasses provide nature-based solutions for both climate change mitigation and adaptation. Through the UNFCCC, several international agreements have established frameworks relevant to these marine ecosystems, including the Kyoto Protocol which entered into force in 2005 and established mechanisms for international trading in carbon offsets.

The Paris Agreement, adopted in 2015 and signed in 2016, promotes actions on climate change mitigation with the aim to keep global temperature increase well below 2°C above pre-industrial levels, while pursuing efforts to limit the increase to 1.5°C. This agreement recognizes the importance of ecosystem-based approaches to climate action.

Carbon Sequestration

Seagrasses are powerful carbon sinks, supporting climate change mitigation efforts through their ability to capture and store carbon dioxide.

Coastal Protection

These marine ecosystems provide natural barriers against storms and erosion, enhancing adaptation to climate impacts.

Policy Integration

International climate agreements increasingly recognize the value of blue carbon ecosystems like seagrasses in meeting climate goals.

Nationally Determined Contributions and Seagrasses

Nationally Determined Contributions (NDCs) under the Paris Agreement provide a forum for nations to outline self-determined steps for emissions reductions. The IPCC has provided guidelines on accounting for greenhouse gases in wetlands, including seagrasses. As of September 2019, approximately 64 countries have included references to coastal and marine ecosystems for adaptation and mitigation in their NDCs.

However, only 10 countries explicitly reference seagrasses, with 8 referring to adaptation and 5 to mitigation. The Bahamas stands out with a measurable target to protect 20 percent of its nearshore marine environment by 2020, including seagrass meadows, coral reefs, and mangrove nurseries.

2016 Assessment

28 countries acknowledged coastal blue carbon habitats for mitigation, with 59 referencing coastal ecosystems for adaptation strategies.

Current Status

Only 10 countries explicitly reference seagrasses, with just one including a measurable target specifically mentioning these ecosystems.

2019 Progress

64 countries included coastal and marine ecosystems in their NDCs for adaptation and mitigation purposes.

Future Potential

Accounting for seagrass climate benefits combined with economic valuation could support sustainable long-term NDC actions.

Seagrasses and Disaster Risk Reduction

Beyond carbon benefits, seagrasses mitigate risks to coastal communities and infrastructure associated with extreme weather events such as storm surges and flooding. By minimizing these risks, seagrass ecosystems can reduce economic losses, aligning with the targets of the Sendai Framework for Disaster Risk Reduction.

Although nature-based solutions do not feature prominently in the Sendai Framework, it does mention the need to "strengthen the sustainable use and management of ecosystems and implement integrated environmental and natural resource management approaches that incorporate disaster risk reduction." This creates an opportunity to highlight seagrasses' role in coastal protection.

30%

Wave Energy Reduction

Dense seagrass meadows can reduce wave energy reaching shorelines by up to 30%, providing natural coastal defense.

40%

Erosion Prevention

Seagrass root systems stabilize sediments, reducing coastal erosion by approximately 40% compared to unvegetated areas.

\$20B

Annual Savings

Global coastal protection value of seagrass ecosystems is estimated at \$20 billion annually in prevented damage and reduced insurance costs.

United Nations Decades Supporting Seagrass Conservation

Two United Nations Decades, both proclaimed by the UN General Assembly in March 2019, provide excellent opportunities to focus attention and attract funding for seagrass ecosystem protection and restoration. These parallel initiatives create a powerful framework for advancing seagrass conservation globally.

The **United Nations Decade on Ecosystem Restoration** (2021-2030) aims to scale up efforts to prevent, halt and reverse ecosystem degradation worldwide, including marine and coastal ecosystems. Stakeholders can include seagrasses in their commitments and actions to achieve decade-related goals, highlighting these vital but often overlooked habitats.

Ecosystem Restoration

Focuses on preventing, halting, and reversing degradation of all ecosystems, including seagrasses.

Global Awareness

These initiatives raise the profile of seagrasses as critical marine habitats deserving protection.

1

2

4

3

Ocean Science

Supports reversing ocean health decline and gathering stakeholders behind a common framework.

Funding Opportunities

Both decades create platforms to attract resources for seagrass research, conservation, and restoration.

Ramsar Convention and Seagrass Protection

The Ramsar Convention represents a significant international agreement promoting the conservation and wise use of wetlands, which explicitly include seagrass meadows. This convention provides a framework for national action and international cooperation for the conservation and sustainable use of wetlands and their resources.

Resolution XIII.20, created at the 2018 Ramsar Conference of Contracting Parties, specifically promotes the conservation and wise use of intertidal wetlands and ecologically associated habitats, with explicit mention of seagrass ecosystems. This resolution strengthens the policy foundation for protecting these vital marine habitats at national and international levels.

Ramsar Protected Sites

Many seagrass meadows worldwide receive protection under Ramsar designation, recognizing their importance as wetland habitats.

Ecological Importance

The Ramsar Convention recognizes seagrasses as critical components of wetland ecosystems that support biodiversity and provide essential services.

International Cooperation

Resolution XIII.20 specifically promotes conservation of intertidal wetlands including seagrass ecosystems through international collaboration.

United Nations Environment Assembly and Seagrass Policy

While there is no United Nations Environment Assembly (UNEA) resolution specifically adopted for seagrass ecosystem management, several existing resolutions relate to these habitats. These include resolutions on protecting marine environments from land-based activities (4/11), sustainable management of mangroves (4/12), and sustainable coral reef management (2/12 and 4/13).

Many drivers of seagrass degradation are addressed in these resolutions without specifically mentioning seagrass ecosystems. Member States call for actions to address multiple and synergistic stressors affecting coastal habitats. A positive development would be the proposition and adoption of a UNEA resolution specifically focused on sustainable management of seagrass ecosystems.

Current Status

No specific UNEA resolution exists for seagrass ecosystems, though related habitats like mangroves and coral reefs have dedicated resolutions.

Indirect Protection

Existing resolutions address drivers of seagrass degradation without explicitly mentioning these ecosystems.

European Framework

In the European Union, seagrasses are explicitly referenced under Annex I of the Habitats Directive and as biological quality indicators in the Water Framework Directive.

Future Opportunity

Proposition and adoption of a specific UNEA resolution on sustainable seagrass management would strengthen international policy.

Management Options for Seagrass Conservation

To effectively achieve policy objectives for seagrass conservation, various management measures and tools are available at national, regional, and global levels. These approaches can help ensure a sustainable future for these vital marine ecosystems while delivering on multiple policy goals.

Policy- and decision-makers have several key options to consider when developing strategies for seagrass protection and sustainable management. These options range from developing dedicated national action plans to implementing integrated coastal management approaches that recognize the connectivity between seagrasses and adjacent ecosystems.

Effective management requires a combination of approaches tailored to local contexts, from protected areas and fishing regulations to restoration initiatives and monitoring programs.

Developing National Action Plans for Seagrass Ecosystems

Currently, very few countries have prepared plans specifically for the protection and management of seagrass ecosystems, especially when compared to the many national plans developed for coral reefs and mangrove ecosystems. Creating dedicated national action plans represents a critical step toward effective seagrass conservation.

These national plans should include specific targets for protection and ecosystem health, while connecting to broader international commitments. Importantly, they should help deliver on Nationally Determined Contributions to the Paris Agreement, Convention on Biological Diversity targets, and the Sustainable Development Goals. Plans must also recognize ecological connectivity with adjacent ecosystems like coral reefs, mangroves, kelp forests, or saltmarshes.

Developing comprehensive national action plans provides a foundation for coordinated seagrass conservation efforts across government agencies, research institutions, and local communities.

Integrated Coastal Management for Seagrass Protection

Spatial planning that integrates stakeholder and cross-ministerial consultation is essential for developing holistic management measures for seagrass ecosystems. This approach ensures effectiveness across the land-sea interface and reduces the cumulative pressures facing seagrasses and associated ecosystems.

Integrated coastal zone management and marine spatial planning provide frameworks for balancing multiple uses of coastal areas while protecting critical habitats. These approaches recognize that threats to seagrasses often originate from both land and sea, requiring coordination across sectors including agriculture, urban development, fisheries, tourism, and transportation.

1

Stakeholder Engagement

Involve all relevant sectors and communities in planning processes to ensure buy-in and comprehensive consideration of needs and impacts.

2

Cross-Ministerial Coordination

Facilitate collaboration between government departments responsible for environment, fisheries, tourism, transportation, and urban development.

3

Spatial Mapping

Develop detailed maps of seagrass distribution and health to inform zoning decisions and identify priority areas for protection.

4

Adaptive Management

Implement flexible approaches that can respond to changing conditions and new information about seagrass ecosystems.

Ecosystem-Based Fisheries Management for Seagrass Protection

Adoption of the ecosystem approach to fisheries developed by the **Food and Agriculture Organization of the United Nations** (FAO) takes into account protection of habitats that support sustainable fisheries. This approach focuses on reducing pressures on seagrasses and associated species, while also reducing or eradicating the use of destructive fishing gear.

Implementing temporally or spatially defined closures or no-take zones can boost larval production and reduce pressures on degraded areas. These protective measures should be designed through community engagement and co-management structures to enhance support and effectiveness. Explicit protection of seagrass meadows within marine protected areas, locally managed marine areas, or other effective area-based conservation measures leads to better conservation outcomes.

1

Habitat Protection

Recognize seagrasses as essential fish habitat

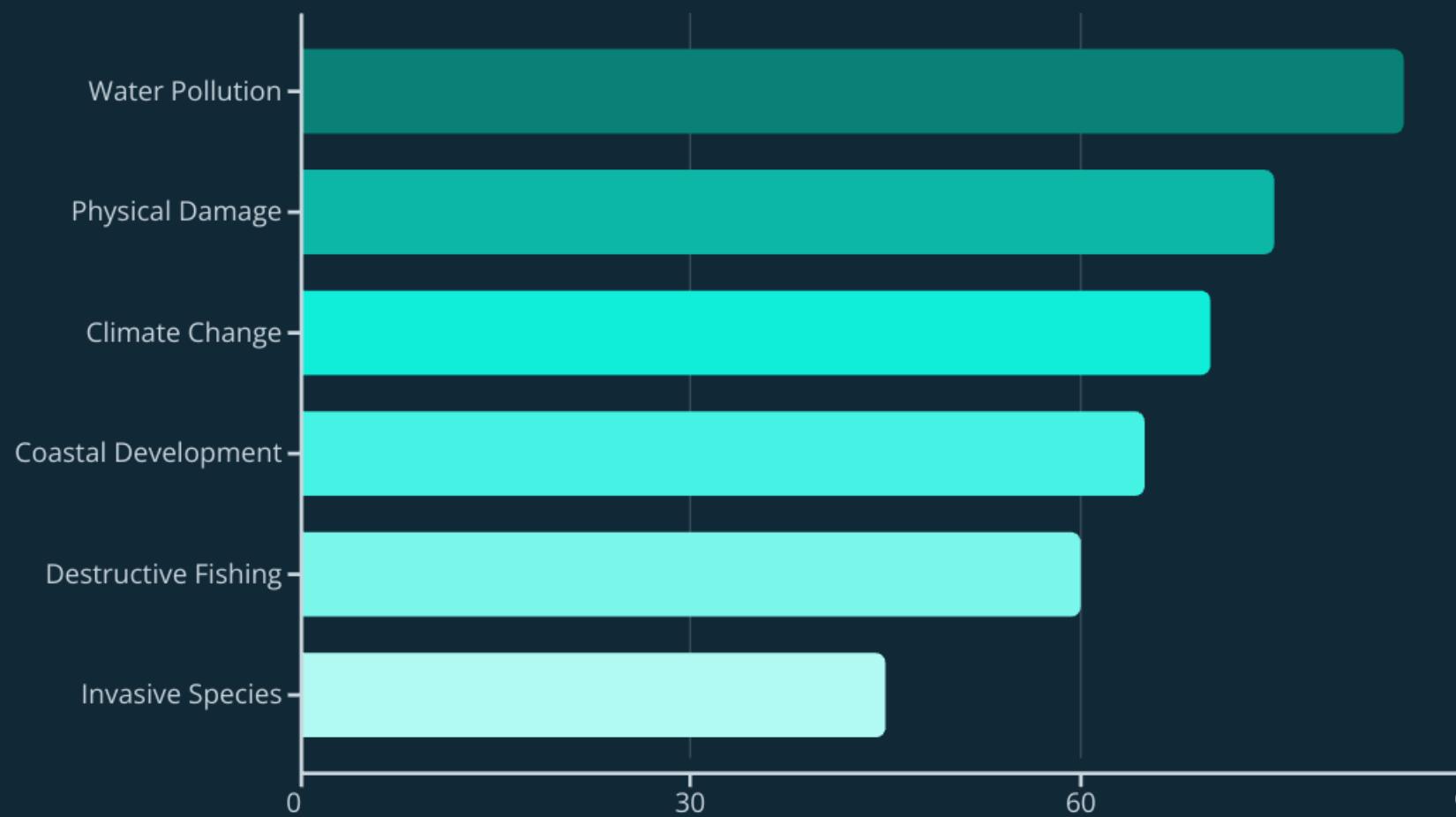
2

Gear Restrictions

Eliminate destructive fishing practices

3

Spatial Management


Implement strategic closures and no-take zones

Effective fisheries management recognizes the critical role seagrasses play in supporting fish populations and aims to maintain these ecosystem services while allowing sustainable harvest.

Addressing Drivers of Seagrass Degradation

To halt degradation and promote recovery, management must address the factors necessary to strengthen seagrass ecosystem resilience and avoid "ecosystem regime shifts" that fundamentally alter the potential for these ecosystems to recover. A comprehensive approach targets both direct and indirect drivers of degradation.

Focusing on measures that enhance genetic diversity, species diversity, biological traits, ecosystem connectivity, and continuous, non-fragmented habitat can significantly contribute to the resilience of seagrass ecosystems. This requires addressing multiple pressures including water quality, physical disturbance, climate impacts, and invasive species.

Addressing these key threats requires coordinated action across sectors and jurisdictions, with particular attention to land-based sources of pollution and coastal development that impact water quality and habitat integrity.

Investing in Seagrass Ecosystem Restoration

Although seagrass restoration trials have been relatively limited in number, a review of 1,786 trials found that restoration success depends on several critical factors. These include the removal of underlying threats, proximity to donor seagrass beds, and the recovery potential of these donor beds.

Planting techniques significantly influence success rates, with large-scale planting often increasing survival. Site selection is equally important, requiring careful assessment of environmental conditions. Seagrass restoration delivers multiple benefits, from local food provision and coastal protection to contributions toward global targets associated with the United Nations Decade on Ecosystem Restoration.

Site Selection

Choose locations with suitable water quality, depth, and substrate

Monitoring

Track progress and adapt approaches as needed

Threat Removal

Address underlying causes of degradation before restoration

Donor Assessment

Ensure healthy source material from nearby meadows

Planting Technique

Implement appropriate methods at sufficient scale

Monitoring Seagrass Ecosystems

Implementing consistent remote sensing and in situ monitoring of seagrass habitats provides essential data for effective management. These monitoring approaches help track the effectiveness of conservation measures, detect inter-annual trends, and support adaptive management and future planning for seagrass ecosystems.

Monitoring also plays a crucial role in informing sustainable development initiatives by tracking benefits associated with ecosystem services and supporting reporting on national commitments to global targets. A combination of satellite imagery, aerial surveys, and field-based assessments provides the most comprehensive understanding of seagrass distribution and health.

Remote Sensing

Satellite and aerial imagery provide broad-scale mapping of seagrass extent and can detect large changes over time, offering cost-effective monitoring of extensive areas.

Field Surveys

In-water assessments by scientists and trained community members provide detailed data on species composition, density, and health indicators not visible from above.

Data Management

Standardized protocols and centralized databases ensure information is comparable across regions and accessible to researchers, managers, and policy makers.

Trend Analysis

Long-term monitoring enables detection of changes in seagrass ecosystems, helping distinguish between natural fluctuations and concerning declines.

Building Public Awareness of Seagrass Importance

Increasing public awareness campaigns and education programs about seagrass ecosystems is vital for their conservation. Enhanced awareness among local communities and tourists can strengthen compliance with management measures and generate greater appreciation for these often overlooked marine habitats.

Public engagement initiatives help overcome the "charisma gap" that seagrasses face compared to more visible ecosystems like coral reefs. When people understand the ecological and economic value of seagrass meadows, they become more invested in their protection and more likely to support conservation policies.

Educational Outreach

School programs and field trips introduce young people to seagrass ecosystems, building the next generation of marine stewards.

Eco-Tourism

Responsible tourism activities can raise awareness while providing economic incentives for conservation.

Citizen Science

Involving community members in monitoring programs builds understanding and creates personal connections to seagrass conservation.

Incorporating Traditional and Local Ecological Knowledge

Encouraging the use of traditional and local ecological knowledge in developing management strategies for seagrass ecosystems creates more effective and well-rounded conservation initiatives. Communities that have lived alongside these marine habitats for generations often possess valuable insights about historical conditions, seasonal patterns, and sustainable use practices.

Engaging local communities in co-managing seagrass ecosystems or associated protected areas builds ownership and improves compliance with regulations. This participatory approach recognizes that conservation success depends not just on scientific understanding but also on social acceptance and cultural relevance.

Knowledge Integration

Traditional ecological knowledge provides historical baselines and understanding of long-term changes in seagrass ecosystems that may not be captured in scientific monitoring programs. This information helps set realistic restoration targets and identify sustainable management practices.

Co-Management Approaches

Collaborative governance arrangements that share decision-making authority between government agencies and local communities create more legitimate and effective conservation outcomes. These approaches recognize rights and responsibilities of traditional resource users.

Cultural Values

Understanding the cultural significance of seagrass ecosystems to local communities helps develop conservation strategies that respect and incorporate these values. This creates stronger motivation for protection beyond purely ecological or economic considerations.

Implementing Effective Seagrass Management

To be effective, seagrass management options must be considered at appropriate scales and levels of governance, with clear understanding of implementation approaches. Step-zero analysis, adaptive management, and meaningful stakeholder participation are essential components of successful conservation initiatives.

Inclusiveness and equitable distribution of impacts, privileges, and opportunities are important considerations, including attention to gender roles and access to resources. Every situation requires careful consideration of a range of socioecological factors, as bioregional, political, cultural, and species-specific elements determine the best methods for influencing policy- and decision-makers.

1 Scale-Appropriate Approaches

Management measures must match the ecological scale of seagrass meadows and the governance structures that influence them, from local to international levels.

2 Adaptive Implementation

Flexibility to adjust strategies based on monitoring results and changing conditions ensures long-term effectiveness of conservation efforts.

3 Equity Considerations

Fair distribution of both conservation responsibilities and benefits builds sustainable support for seagrass protection across diverse stakeholder groups.

4 Context Sensitivity

Tailoring approaches to specific bioregional, political, cultural, and ecological contexts increases the likelihood of successful implementation and lasting impact.